000877414 001__ 877414
000877414 005__ 20240712112824.0
000877414 0247_ $$2doi$$a10.1016/j.xcrp.2020.100072
000877414 0247_ $$2Handle$$a2128/25255
000877414 0247_ $$2altmetric$$aaltmetric:83358791
000877414 0247_ $$2WOS$$aWOS:000658745900010
000877414 037__ $$aFZJ-2020-02177
000877414 041__ $$aEnglish
000877414 082__ $$a530
000877414 1001_ $$0P:(DE-Juel1)161337$$aUdomsilp, David$$b0$$eFirst author$$ufzj
000877414 245__ $$aMetal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems
000877414 260__ $$a[New York, NY]$$bElsevier$$c2020
000877414 3367_ $$2DRIVER$$aarticle
000877414 3367_ $$2DataCite$$aOutput Types/Journal article
000877414 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594216390_9935
000877414 3367_ $$2BibTeX$$aARTICLE
000877414 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877414 3367_ $$00$$2EndNote$$aJournal Article
000877414 520__ $$aSolid oxide fuel cells (SOFCs) exhibit potential to become a key technology for future clean energy systems. The metal-supported SOFC exhibits decisive strengths like fast start-up capability, mechanical robustness, and acceptable cost, making it the concept of choice for mobile applications. As a promising example, SOFC-powered range extenders for electric vehicles offer fast refueling and significantly increased driving range, while lowering size, weight, and the cost of the vehicle’s battery. Here, we report the development of a metal-supported SOFC aiming at exceptionally high power density. A knowledge-based improvement of all electrochemically active cell components enables a performance increase up to a factor of 10 and demonstrates the effectiveness of target-oriented optimization of processing and microstructure. Ultimately, enhanced cells meet the industrial performance target by providing a current density of 2.8 A × cm−2 at 650°C and 0.7 V, setting a benchmark for SOFC performance.
000877414 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000877414 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000877414 588__ $$aDataset connected to CrossRef
000877414 7001_ $$0P:(DE-HGF)0$$aRechberger, Jürgen$$b1
000877414 7001_ $$0P:(DE-HGF)0$$aNeubauer, Raphael$$b2
000877414 7001_ $$0P:(DE-Juel1)176805$$aBischof, Cornelia$$b3$$ufzj
000877414 7001_ $$0P:(DE-Juel1)161483$$aThaler, Florian$$b4$$ufzj
000877414 7001_ $$0P:(DE-HGF)0$$aSchafbauer, Wolfgang$$b5
000877414 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b6$$ufzj
000877414 7001_ $$0P:(DE-HGF)0$$ade Haart, Lambertus G. J.$$b7
000877414 7001_ $$0P:(DE-HGF)0$$aNenning, Andreas$$b8
000877414 7001_ $$0P:(DE-HGF)0$$aOpitz, Alexander K.$$b9
000877414 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b10$$ufzj
000877414 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b11$$eCorresponding author
000877414 773__ $$0PERI:(DE-600)3015727-4$$a10.1016/j.xcrp.2020.100072$$gp. 100072 -$$n6$$p100072$$tCell reports$$v1$$x2666-3864$$y2020
000877414 8564_ $$uhttps://juser.fz-juelich.de/record/877414/files/1-s2.0-S2666386420300679-main.pdf$$yOpenAccess
000877414 8564_ $$uhttps://juser.fz-juelich.de/record/877414/files/Final%20Draft%20Post%20Referee_High%20Performance%20MSC.pdf$$yOpenAccess
000877414 8564_ $$uhttps://juser.fz-juelich.de/record/877414/files/Final%20Draft%20Post%20Referee_High%20Performance%20MSC.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877414 8564_ $$uhttps://juser.fz-juelich.de/record/877414/files/1-s2.0-S2666386420300679-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877414 909CO $$ooai:juser.fz-juelich.de:877414$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161337$$aForschungszentrum Jülich$$b0$$kFZJ
000877414 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a AVL List GmbH$$b1
000877414 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a AVL List GmbH$$b2
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176805$$aForschungszentrum Jülich$$b3$$kFZJ
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161483$$aForschungszentrum Jülich$$b4$$kFZJ
000877414 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Plansee SE$$b5
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000877414 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a TU Wien$$b8
000877414 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a TU Wien$$b9
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b10$$kFZJ
000877414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b11$$kFZJ
000877414 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000877414 9141_ $$y2020
000877414 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877414 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877414 920__ $$lyes
000877414 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877414 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000877414 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000877414 9801_ $$aFullTexts
000877414 980__ $$ajournal
000877414 980__ $$aVDB
000877414 980__ $$aUNRESTRICTED
000877414 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877414 980__ $$aI:(DE-Juel1)IEK-9-20110218
000877414 980__ $$aI:(DE-82)080011_20140620
000877414 981__ $$aI:(DE-Juel1)IET-1-20110218
000877414 981__ $$aI:(DE-Juel1)IMD-2-20101013