001     877414
005     20240712112824.0
024 7 _ |a 10.1016/j.xcrp.2020.100072
|2 doi
024 7 _ |a 2128/25255
|2 Handle
024 7 _ |a altmetric:83358791
|2 altmetric
024 7 _ |a WOS:000658745900010
|2 WOS
037 _ _ |a FZJ-2020-02177
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Udomsilp, David
|0 P:(DE-Juel1)161337
|b 0
|e First author
|u fzj
245 _ _ |a Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems
260 _ _ |a [New York, NY]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594216390_9935
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid oxide fuel cells (SOFCs) exhibit potential to become a key technology for future clean energy systems. The metal-supported SOFC exhibits decisive strengths like fast start-up capability, mechanical robustness, and acceptable cost, making it the concept of choice for mobile applications. As a promising example, SOFC-powered range extenders for electric vehicles offer fast refueling and significantly increased driving range, while lowering size, weight, and the cost of the vehicle’s battery. Here, we report the development of a metal-supported SOFC aiming at exceptionally high power density. A knowledge-based improvement of all electrochemically active cell components enables a performance increase up to a factor of 10 and demonstrates the effectiveness of target-oriented optimization of processing and microstructure. Ultimately, enhanced cells meet the industrial performance target by providing a current density of 2.8 A × cm−2 at 650°C and 0.7 V, setting a benchmark for SOFC performance.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rechberger, Jürgen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Neubauer, Raphael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bischof, Cornelia
|0 P:(DE-Juel1)176805
|b 3
|u fzj
700 1 _ |a Thaler, Florian
|0 P:(DE-Juel1)161483
|b 4
|u fzj
700 1 _ |a Schafbauer, Wolfgang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 6
|u fzj
700 1 _ |a de Haart, Lambertus G. J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Nenning, Andreas
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Opitz, Alexander K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 10
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.xcrp.2020.100072
|g p. 100072 -
|0 PERI:(DE-600)3015727-4
|n 6
|p 100072
|t Cell reports
|v 1
|y 2020
|x 2666-3864
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877414/files/1-s2.0-S2666386420300679-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877414/files/Final%20Draft%20Post%20Referee_High%20Performance%20MSC.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877414/files/Final%20Draft%20Post%20Referee_High%20Performance%20MSC.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877414/files/1-s2.0-S2666386420300679-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877414
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161337
910 1 _ |a AVL List GmbH
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a AVL List GmbH
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161483
910 1 _ |a Plansee SE
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a TU Wien
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a TU Wien
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21