000877416 001__ 877416
000877416 005__ 20240709081908.0
000877416 037__ $$aFZJ-2020-02179
000877416 1001_ $$0P:(DE-Juel1)173820$$aLiu, Chang$$b0$$eCorresponding author$$ufzj
000877416 1112_ $$aThe Electrochemical Society 2020$$cHonolulu$$d2020-10-04 - 2020-10-09$$wHawaii
000877416 245__ $$aInvestigating the interface of TiOX/PGM coating of porous transport layers used in PEM electrolyzers by surface analysis
000877416 260__ $$c2020
000877416 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1591268502_31050
000877416 3367_ $$033$$2EndNote$$aConference Paper
000877416 3367_ $$2BibTeX$$aINPROCEEDINGS
000877416 3367_ $$2DRIVER$$aconferenceObject
000877416 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000877416 3367_ $$2ORCID$$aOTHER
000877416 520__ $$aInvestigating the interface of TiOx/PGM coating of porous transport layers used in PEM electrolyzers by surface analysis Chang Liu1*, Meital Shviro1, Sarah Zaccarine2, Aldo Saul Gago3, Pawel Gazdzicki3, Tobias Morawietz3, Indro Biswas3, Roland Schierholz4, Svitlana Pylypenko2, Werner Lehnert1, 5 and Marcelo Carmo1 1 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-14): Electrochemical Process Engineering, 52425, Jülich, Germany.2 Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.3 Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany.4 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9): Fundamental Electrochemistry, 52425, Jülich, Germany.5 Modeling in Electrochemical Process Engineering, RWTH Aachen University, Germany.Titanium porous transport layer (PTL) situating at the anode side of a PEM electrolyzer is subjected to harsh oxidizing conditions such as high anode overpotential, low pH, and oxygen evolution [1, 2]. Under these conditions, titanium (Ti0) changes its oxidation state over time, which induces the formation of a thin but continuously growing layer of passivated titanium (TiOx). Consequently, the electrical conductivity of the titanium fibers is adversely affected, fatally decreasing cell performance and durability [3, 4]. Here, we demonstrate a scalable and simple approach to using iridium or platinum as a protective layer for titanium-based PTLs. In this work, 4000 hour stable durability profiles are achieved when PTLs are coated with only 0.1 mg·cm-2 platinum or iridium (10 times reduction of Au or Pt typically used in current commercial electrolyzers). The real morphology of the TiOx/PGM (platinum group metal) coating interface of PTL is shown by different surface analysis methods. We found that the thickness of TiOx layer of iridium coated PTL did not further increase after the long-term operation. The results of this work show how the interface of a well-protected titanium fiber behaves against passivation after a long-term operation under real electrolysis conditions.Reference[1] M. Carmo, D.L. Fritz, J. Merge, and D. Stolten, A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934.[2] K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, and M. Bornstein, Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale, in Annual Review of Chemical and Biomolecular Engineering, Vol 10, J.M. Prausnitz, Editor. 2019, Annual Reviews: Palo Alto. p. 219-239.[3] C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke, and D. Stolten, An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. Journal of Power Sources, 2016. 326: p. 120-128.[4] C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert, J.L. Young, T. Smolinka, D. Stolten, and W. Lehnert, Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochemistry Communications, 2018. 97: p. 96-99.
000877416 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000877416 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b1$$ufzj
000877416 7001_ $$0P:(DE-HGF)0$$aZaccarine, Sarah$$b2
000877416 7001_ $$0P:(DE-HGF)0$$aGago, Aldo Saul$$b3
000877416 7001_ $$0P:(DE-HGF)0$$aGazdzicki, Pawel$$b4
000877416 7001_ $$0P:(DE-HGF)0$$aMorawietz, Tobias$$b5
000877416 7001_ $$0P:(DE-HGF)0$$aBiswas, Indro$$b6
000877416 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b7$$ufzj
000877416 7001_ $$0P:(DE-HGF)0$$aPylypenko, Svitlana$$b8
000877416 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b9$$ufzj
000877416 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b10$$ufzj
000877416 909CO $$ooai:juser.fz-juelich.de:877416$$pVDB
000877416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173820$$aForschungszentrum Jülich$$b0$$kFZJ
000877416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b1$$kFZJ
000877416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b7$$kFZJ
000877416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b9$$kFZJ
000877416 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b9$$kRWTH
000877416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b10$$kFZJ
000877416 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000877416 9141_ $$y2020
000877416 920__ $$lyes
000877416 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000877416 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000877416 980__ $$aabstract
000877416 980__ $$aVDB
000877416 980__ $$aI:(DE-Juel1)IEK-14-20191129
000877416 980__ $$aI:(DE-Juel1)IEK-9-20110218
000877416 980__ $$aUNRESTRICTED
000877416 981__ $$aI:(DE-Juel1)IET-4-20191129
000877416 981__ $$aI:(DE-Juel1)IET-1-20110218