000877435 001__ 877435
000877435 005__ 20220930130241.0
000877435 0247_ $$2doi$$a10.3390/cryst10060496
000877435 0247_ $$2Handle$$a2128/25095
000877435 0247_ $$2altmetric$$aaltmetric:83991397
000877435 0247_ $$2WOS$$aWOS:000551177600001
000877435 037__ $$aFZJ-2020-02190
000877435 082__ $$a540
000877435 1001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b0$$eCorresponding author$$ufzj
000877435 245__ $$aCrystal Structure of the N112A Mutant of the Light-Driven Sodium Pump KR2
000877435 260__ $$aBasel$$bMDPI$$c2020
000877435 3367_ $$2DRIVER$$aarticle
000877435 3367_ $$2DataCite$$aOutput Types/Journal article
000877435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592485315_23512
000877435 3367_ $$2BibTeX$$aARTICLE
000877435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877435 3367_ $$00$$2EndNote$$aJournal Article
000877435 520__ $$aThe light-driven sodium pump KR2, found in 2013 in the marine bacteria Krokinobacter eikastus, serves as a model protein for the studies of the sodium-pumping microbial rhodopsins (NaRs). KR2 possesses a unique NDQ (N112, D116, and Q123) set of the amino acid residues in the functionally relevant positions, named the NDQ motif. The N112 was shown to determine the Na+/H+ selectivity and pumping efficiency of the protein. Thus, N112A mutation converts KR2 into an outward proton pump. However, no structural data on the functional conversions of the light-driven sodium pumps are available at the moment. Here we present the crystal structure of the N112A mutant of KR2 in the ground state at the resolution of 2.4 Å. The structure revealed a minor deflection in the central part of the helix C and a double conformation of the L74 residue in the mutant. The organization of the retinal Schiff base and neighboring water molecules is preserved in the ground state of KR2-N112A. The presented data provide structural insights into the effects of the alterations of the characteristic NDQ motif of NaRs. Our findings also demonstrate that for the rational design of the KR2 variants with modified ion selectivity for optogenetic applications, the structures of the intermediate states of both the protein and its functional variants are required.
000877435 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000877435 588__ $$aDataset connected to CrossRef
000877435 7001_ $$0P:(DE-Juel1)131948$$aBaeken, Christian$$b1$$ufzj
000877435 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b2$$ufzj
000877435 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst10060496$$gVol. 10, no. 6, p. 496 -$$n6$$p496 -$$tCrystals$$v10$$x2073-4352$$y2020
000877435 8564_ $$uhttps://juser.fz-juelich.de/record/877435/files/Invoice_crystals-806727.pdf
000877435 8564_ $$uhttps://juser.fz-juelich.de/record/877435/files/Invoice_crystals-806727.pdf?subformat=pdfa$$xpdfa
000877435 8564_ $$uhttps://juser.fz-juelich.de/record/877435/files/crystals-10-00496.pdf$$yOpenAccess
000877435 8564_ $$uhttps://juser.fz-juelich.de/record/877435/files/crystals-10-00496.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877435 8767_ $$8crystals-806727$$92020-06-05$$d2020-06-08$$eAPC$$jZahlung erfolgt$$pcrystals-806727$$zBelegnr. 1200153836
000877435 909CO $$ooai:juser.fz-juelich.de:877435$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b0$$kFZJ
000877435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131948$$aForschungszentrum Jülich$$b1$$kFZJ
000877435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich$$b2$$kFZJ
000877435 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000877435 9141_ $$y2020
000877435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000877435 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877435 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2018$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877435 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000877435 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000877435 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000877435 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000877435 980__ $$ajournal
000877435 980__ $$aVDB
000877435 980__ $$aUNRESTRICTED
000877435 980__ $$aI:(DE-Juel1)IBI-7-20200312
000877435 980__ $$aAPC
000877435 9801_ $$aAPC
000877435 9801_ $$aFullTexts