000877445 001__ 877445
000877445 005__ 20240708133914.0
000877445 0247_ $$2doi$$a10.1016/j.apgeochem.2020.104630
000877445 0247_ $$2ISSN$$a0883-2927
000877445 0247_ $$2ISSN$$a1872-9134
000877445 0247_ $$2Handle$$a2128/25030
000877445 0247_ $$2WOS$$aWOS:000556136100008
000877445 037__ $$aFZJ-2020-02198
000877445 041__ $$aEnglish
000877445 082__ $$a550
000877445 1001_ $$0P:(DE-Juel1)137066$$aLange, Steve$$b0
000877445 245__ $$aUptake and retention of molybdenum in cementitious systems
000877445 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877445 3367_ $$2DRIVER$$aarticle
000877445 3367_ $$2DataCite$$aOutput Types/Journal article
000877445 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605005314_20937
000877445 3367_ $$2BibTeX$$aARTICLE
000877445 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877445 3367_ $$00$$2EndNote$$aJournal Article
000877445 520__ $$aThe uptake of molybdenum, present in aqueous cementitious environments in the form of the molybdate ion (MoO42-), by various cement hydration phases such as calcium-silicate-hydrates (C–S–H), monosulphate (AFm), ettringite (AFt), as well as hardened cement paste made from Ordinary Portland cement (OPC), was studied in batch-type sorption experiments under anoxic conditions. Uptake kinetics were generally fast, leading to sorption equilibrium in less than 30 days. In particular, a strong uptake of molybdate by AFm phases was observed as well as a distinct contribution of C–S–H phases to the molybdate retention in cementitious systems, the latter depending on the Ca/Si-ratio of the C–S–H and the alkali content in solution. In systems containing hydrogarnet, the neo-formation of a molybdate-bearing AFm phase was identified as an additional process contributing to molybdate retention. The findings have implications for selecting grouts for the immobilisation of radioactive waste streams containing Mo-93 and also enhance the data available on molybdate sorption and retention in cementitious systems.
000877445 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0
000877445 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000877445 588__ $$aDataset connected to CrossRef
000877445 7001_ $$0P:(DE-Juel1)130364$$aKlinkenberg, Martina$$b1
000877445 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b2
000877445 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b3
000877445 7001_ $$0P:(DE-Juel1)156511$$aDeissmann, Guido$$b4$$eCorresponding author
000877445 773__ $$0PERI:(DE-600)1499242-5$$a10.1016/j.apgeochem.2020.104630$$gp. 104630 -$$p104630$$tApplied geochemistry$$v119$$x0883-2927$$y2020
000877445 8564_ $$uhttps://juser.fz-juelich.de/record/877445/files/Lange%20ApplGeochem%202020.pdf$$yPublished on 2020-05-20. Available in OpenAccess from 2022-05-20.
000877445 8564_ $$uhttps://juser.fz-juelich.de/record/877445/files/Lange%20ApplGeochem%202020.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-20. Available in OpenAccess from 2022-05-20.
000877445 909CO $$ooai:juser.fz-juelich.de:877445$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137066$$aForschungszentrum Jülich$$b0$$kFZJ
000877445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130364$$aForschungszentrum Jülich$$b1$$kFZJ
000877445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b2$$kFZJ
000877445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b3$$kFZJ
000877445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156511$$aForschungszentrum Jülich$$b4$$kFZJ
000877445 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000877445 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000877445 9141_ $$y2020
000877445 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877445 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL GEOCHEM : 2018$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877445 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-05$$wger
000877445 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877445 920__ $$lyes
000877445 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000877445 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000877445 9801_ $$aFullTexts
000877445 980__ $$ajournal
000877445 980__ $$aVDB
000877445 980__ $$aI:(DE-Juel1)IEK-6-20101013
000877445 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000877445 980__ $$aUNRESTRICTED
000877445 981__ $$aI:(DE-Juel1)IFN-2-20101013