000877448 001__ 877448
000877448 005__ 20240709081909.0
000877448 0247_ $$2doi$$a10.1016/j.compchemeng.2020.106890
000877448 0247_ $$2ISSN$$a0098-1354
000877448 0247_ $$2ISSN$$a1873-4375
000877448 0247_ $$2Handle$$a2128/25018
000877448 0247_ $$2altmetric$$aaltmetric:82183707
000877448 0247_ $$2WOS$$aWOS:000555544800013
000877448 037__ $$aFZJ-2020-02201
000877448 082__ $$a660
000877448 1001_ $$0P:(DE-HGF)0$$aBrée, Luisa C.$$b0
000877448 245__ $$aModular modeling of electrochemical reactors: Comparison of CO2-electolyzers
000877448 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877448 3367_ $$2DRIVER$$aarticle
000877448 3367_ $$2DataCite$$aOutput Types/Journal article
000877448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591618611_14891
000877448 3367_ $$2BibTeX$$aARTICLE
000877448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877448 3367_ $$00$$2EndNote$$aJournal Article
000877448 520__ $$aFor economic electrochemical production at industrial scale, high current densities are desired. Conversely, economic electricity utilization requires minimal overpotentials. Ultimately, product yield and composition most likely depend on both overpotential and current density. Modeling and simulation enable the detailed examination. Therefore, we develop modular mechanistic dynamic models for parts of the electrochemical membrane reactors that can be assembled to represent cell setups in order to assess their performance and optimization potential. The models include relevant overpotentials such as ohmic losses and mass transport limitations. The modelling methodology is applied to experimental CO2 reduction data in different cell setups. The novelty of the work lies in the parameter estimation to experimental data given for very different electrode/membrane configurations as well as very different gas and liquid flow configurations. The validated models allow the analysis and detailed comparison of dominant loss terms of the reactor setups indicating optimization possibilities and potentials.
000877448 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877448 588__ $$aDataset connected to CrossRef
000877448 7001_ $$0P:(DE-HGF)0$$aWessling, Matthias$$b1
000877448 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$eCorresponding author$$ufzj
000877448 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.106890$$gVol. 139, p. 106890 -$$p106890 -$$tComputers & chemical engineering$$v139$$x0098-1354$$y2020
000877448 8564_ $$uhttps://juser.fz-juelich.de/record/877448/files/Postprint_ecMR_LuisaBree.pdf$$yPublished on 2020-04-29. Available in OpenAccess from 2022-04-29.
000877448 8564_ $$uhttps://juser.fz-juelich.de/record/877448/files/Postprint_ecMR_LuisaBree.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-04-29. Available in OpenAccess from 2022-04-29.
000877448 909CO $$ooai:juser.fz-juelich.de:877448$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877448 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877448 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000877448 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000877448 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877448 9141_ $$y2020
000877448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877448 920__ $$lyes
000877448 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877448 9801_ $$aFullTexts
000877448 980__ $$ajournal
000877448 980__ $$aVDB
000877448 980__ $$aUNRESTRICTED
000877448 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877448 981__ $$aI:(DE-Juel1)ICE-1-20170217