001     877448
005     20240709081909.0
024 7 _ |a 10.1016/j.compchemeng.2020.106890
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/25018
|2 Handle
024 7 _ |a altmetric:82183707
|2 altmetric
024 7 _ |a WOS:000555544800013
|2 WOS
037 _ _ |a FZJ-2020-02201
082 _ _ |a 660
100 1 _ |a Brée, Luisa C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Modular modeling of electrochemical reactors: Comparison of CO2-electolyzers
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591618611_14891
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For economic electrochemical production at industrial scale, high current densities are desired. Conversely, economic electricity utilization requires minimal overpotentials. Ultimately, product yield and composition most likely depend on both overpotential and current density. Modeling and simulation enable the detailed examination. Therefore, we develop modular mechanistic dynamic models for parts of the electrochemical membrane reactors that can be assembled to represent cell setups in order to assess their performance and optimization potential. The models include relevant overpotentials such as ohmic losses and mass transport limitations. The modelling methodology is applied to experimental CO2 reduction data in different cell setups. The novelty of the work lies in the parameter estimation to experimental data given for very different electrode/membrane configurations as well as very different gas and liquid flow configurations. The validated models allow the analysis and detailed comparison of dominant loss terms of the reactor setups indicating optimization possibilities and potentials.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wessling, Matthias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2020.106890
|g Vol. 139, p. 106890 -
|0 PERI:(DE-600)1499971-7
|p 106890 -
|t Computers & chemical engineering
|v 139
|y 2020
|x 0098-1354
856 4 _ |y Published on 2020-04-29. Available in OpenAccess from 2022-04-29.
|u https://juser.fz-juelich.de/record/877448/files/Postprint_ecMR_LuisaBree.pdf
856 4 _ |y Published on 2020-04-29. Available in OpenAccess from 2022-04-29.
|x pdfa
|u https://juser.fz-juelich.de/record/877448/files/Postprint_ecMR_LuisaBree.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877448
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21