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a b s t r a c t 

Decarbonization and defossilization of energy supply as well as increasing decentralization of energy gen- 
eration necessitate the development of efficient strategies for design and operation of sector-coupled 
energy systems. Today, design and operation of process and energy systems rely on powerful numeri- 
cal methods, in particular, optimization methods. The development of such methods benefits from re- 
producible benchmarks including transparent model equations and complete input data sets. However, 
to the authors’ best knowledge and with respect to design and optimal control of sector-coupled en- 
ergy systems, there is a lack of available benchmarks. Hence, this article provides a model compendium, 
exemplary realistic data sets, as well as two case studies (i.e., optimization benchmarks) for an in- 
dustrial/research campus in an open-source description. The compendium includes stationary, quasi- 
stationary, and dynamic models for typical components as well as linearization schemes relevant for 
optimization of design, operation, and control of sector-coupled energy systems. 

© 2020 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Realistic mathematical models of sector-coupled energy systems 
are a key for developing tailored numerical optimization meth- 
ods, which in turn are essential for manifold research efforts to- 
wards a successful decarbonization, defossilization, and decentral- 
ization of energy supply. Numerical optimization allows to opti- 
mally plan, design, operate, and control energy systems while ac- 
counting for the inherent volatility of renewables as well as for en- 
vironmental, economic, and social aspects, see Andiappan (2017) ; 
Mitsos et al. (2018) . 
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david.shu@rwth-aachen.de (D.Y. Shu), andre.bardow@ltt.rwth-aachen.de (A. Bar- 
dow), lutz.groell@kit.edu (L. Gröll), veit.hagenmeyer@kit.edu (V. Hagenmeyer), 
dmueller@eonerc.rwth-aachen.de (D. Müller), amitsos@alum.mit.edu (A. Mitsos). 

In process systems engineering, numerical optimization is in 
many cases the method of choice for control and automation 
problems ( Engell, 2007; Engell and Harjunkoski, 2012; Kadam 

and Marquardt, 2007 ). Moreover, its importance for design opti- 
mization ( Frangopoulos, 2018 ) and operation of energy systems is 
steadily increasing. The respective research efforts regarding the 
dynamic optimization of energy systems comprise a variety of 
methods and applications, spanning from the development of ac- 
curate and fast simulation methods for the control of thermal en- 
ergy storage ( Barz et al., 2018 ) via the incorporation of real-world 
weather forecasts ( Constantinescu et al., 2011 ) to nonlinear model- 
predictive control and/or real-time optimization of power grids 
with storage ( Adeodu et al., 2019; Braun et al., 2018; Faulwasser 
and Engelmann, 2019; Matke et al., 2016 ), and the optimization 
of HVAC (Heating, Ventilation, and Air Conditioning) systems for 
buildings ( Bürger et al., 2018; Harb et al., 2015; Perez et al., 2016; 
Touretzky and Baldea, 2016; Zhang et al., 2014 ). 

Design of energy systems is typically cast as Mixed-integer 
Nonlinear Programs (MINLPs), e.g., in Li and Barton (2015) , or 

https://doi.org/10.1016/j.compchemeng.2020.106760 
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Mixed-integer Linear Programs (MILPs), e.g., in Lara et al. (2018) ; 
Mancarella (2014) ; Zhang et al. (2019) . Besides, dynamic opti- 
mization problems comprising operational optimization and opti- 
mal control are typically solved by direct methods based on dis- 
cretization, yielding MINLPs, NLPs (Nonlinear Programs), or MILPs, 
see Biegler and Grossmann (2004) ; Grossmann and Biegler (2004) . 
Optimization problems arising in context of sector-coupled energy 
systems are challenging for a number of reasons: multiple time 
scales, large number of equations, uncertainties, potentially con- 
flicting multiple objectives, or the hard-to-quantify effect of un- 
derlying modeling assumptions. Hence, there are widespread and 
ongoing research efforts on modeling and numerical optimization 
for such systems, see, e.g., Barton (2009) ; Faulwasser et al. (2018) ; 
Majewski et al. (2017) ; Mühlpfordt et al. (2018) ; Roald et al. (2017) . 

The development of any numerical method benefits from well- 
defined, transparent, and realistic benchmark problems. In numer- 
ical optimization, benchmark libraries are therefore widely estab- 
lished, including MINLPLib ( Bussieck et al., 2003 ), PrincetonLib 
( Vanderbei et al., 2004 ), COCONUT benchmark ( Shcherbina et al., 
2002 ), MINTOC benchmark ( Sager, 2012 ), and MIPLIB ( Koch et al., 
2017 ). Benchmark problems are also common in Process Sys- 
tems Engineering such as the Williams-Otto reactor ( Williams and 
Otto, 1960 ), which, up to this day, is frequently used to com- 
pare methods for real-time optimization of process systems 
( Srinivasan and Bonvin, 2019 ). Another well-known benchmark 
problem is the Tennessee Eastman process proposed by Downs and 
Vogel (1993) . It is still in use for a wide range of research purposes, 
e.g., for demonstrating the efficiency of a newly developed plant- 
wide control scheme ( Luppi et al., 2018 ). Recently, similar effort s 
have been made for energy systems. This includes 

• software frameworks for modeling and optimization of sector- 
coupled energy supply systems available online, compare for 
example Augenstein et al. (2005) , Ringkjøb et al. (2018) , 
Schütz et al. (2017) , and the Temoa framework with the 
widely accepted linear and quasi-stationary benchmark model 
Utopia ( Howells et al., 2011; Hunter et al., 2013 ); 

• a lately increasing number of open source data-bases provid- 
ing country-scale data like the Open Energy Modeling Initiative 
( Open Energy Modelling Initiative, 2019 ) or specifications of 
complete power plants like the JRC Open Power Plants Database 
( Hidalgo Gonzalez et al., 2019 ); 

• benchmarks for specific energy systems like electricity grids 
( IEEE, 2018; Hörsch et al., 2018; University of Washington, 2018 ) 
or energy supply systems for supermarkets as used, e.g., in 
Beykal et al. (2018) ; and 

• specifically focused model collections, e.g., for ship energy sys- 
tems ( Sakalis et al., 2019 ) or for economic design of combined 
cooling, heating, and power (CCHP) systems ( Rech, 2019 ). 

However, there are also certain shortcomings and gaps in the 
benchmarks available in the literature. 

• The existing software frameworks usually lack transparency. 
Typically, there is no easily accessible documentation of model 
equations and corresponding example data. 

• Existing data-sets do not account for the scale of an indus- 
trial/research campus or specifications of individual compo- 
nents like boilers. 

• Specific benchmarks and model collections lack flexibility. If the 
focus is on a particular sector-coupled energy system, different 
objectives, or the combination of quasi-stationary and dynamic 
operation of different components, the adaptation of the pro- 
posed setting is usually time consuming or even effectively im- 
possible due to a lack of documentation. 

To the best of the authors’ knowledge, there is currently no 
widely accepted benchmark for the optimization of design, oper- 

ation, and control of energy systems supplying industrial/research 
campuses. Moreover, models and especially input data for such en- 
ergy systems are scattered over numerous publications, specifica- 
tion sheets, websites, etc. and are often subject to data protection 
regulations. 

Thus, we compile a model compendium for typical components 
of an energy supply system coupling cooling, heating, and electric- 
ity for industrial/research campuses. The considered setting is in- 
spired by the real-world supply systems of the Campus North of 
the Karlsruhe Institute of Technology and the Forschungszentrum 

Jülich. 1 We provide a complete data set for weather, energy prices, 
cooling, heating, and electricity demands as well as parameter val- 
ues for the system components. On the demand side, we include 
building models validated with real-world measurements. The ap- 
plication setting considered is the optimal design and operation of 
industrial/research campuses. In principle the scope of the models 
could be extended to include industrial processes and large-scale 
networks; however, this is outside the scope of the manuscript. 
Finally, we propose two optimization case studies as open-source 
benchmark problems: (1) a bi-objective design optimization of a 
generic energy system and (2) the operational optimization of a 
dynamic model for a sector-coupled energy system with fixed de- 
sign. 

We address requirements of different application contexts, 
namely the optimization of design, operation, and control of en- 
ergy systems. Hence, we include stationary, quasi-stationary, and 
dynamic model equations of the most frequently considered com- 
ponents. We do not attempt an extensive review on modeling 
strategies or data ranges. Rather we present one common model 
formulation for each component. These models are based on al- 
ready available publications and specification sheets. In fact, the 
components are modeled based on energy flow rates, which have 
to satisfy energy balance equations and input-output-relations 
given by efficiency or COP (coefficient of performance) curves, i.e., 
they are first-principles models. For the sake of self-containment, 
we recall a linearization scheme ( Voll et al., 2013 ) and an approach 
for considering a minimum load fraction within the purely con- 
tinuous and smooth dynamic optimization model of our second 
benchmark case study based on standard techniques. To foster ac- 
cessibility of the compendium, we propose a consistent notation. 

The remainder of this article is structured as follows: In 
Section 2 , we present the virtual campus including all components 
of an energy supply system, which are considered in this article. 
Based on this generic energy system , we emphasize how the con- 
sistent notation and modeling of our corresponding model com- 
pendium allows for identifying synergies and structural differences 
of the various fields of applications. Section 3 contains description 
and results of the two benchmark case studies. Finally, conclusions 
are drawn in Section 4 . The Appendix starts with the introduc- 
tion of the notation in Appendix A . Afterwards, the model com- 
pendium including example parameter values forms Appendix B . 
In Appendix C and Appendix D , the linearization scheme and a 
smooth extension of the dynamic equations regarding a minimum 

load fraction, respectively, are given. The git repository available at 
https://git.es2050.org/heci/energy-benchmark contains input and 
output data as well as the models and optimization formulations 
in GAMS ( McCarl and Rosenthal, 2016 ), Modelica ( Mattsson and 
Elmqvist, 1997 ), and Pyomo http://www.pyomo.org/ . 

2. Generic energy system for a campus 

Fig. 1 shows the generic structure of a sector-coupled energy 
supply system for a campus of variable size considered in this arti- 

1 This article is a contribution to the open source and benchmark project HECI –
Helmholtz Energy Computing Initiative ( HECI, 2019 ). 
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cle. The eventual choice of components, number of respective units 
as well as coupling points between the gas, electricity, heating, and 
cooling grid is subject to the specifically chosen application. Both 
economic and environmental criteria can be chosen for evaluating 
design and operation of the generic energy system. 

To cover the specific needs of the optimization of design, op- 
eration, and control of energy supply systems, consistent quasi- 
stationary and dynamic models as well as linear and nonlinear 
models are provided. The quasi-stationary models can be obtained 
by setting all temporal derivatives to zero in the dynamic models. 
Similarly, the linear models converge to the nonlinear models in 
the limit of zero distance between two adjacent supporting points. 
As a result, the gathered component models form a unified frame- 
work, which allows to investigate the impact of linearizations and 
the assumption of quasi-stationary behavior for the optimization 
of energy supply systems without distortions caused by different 
modeling premises. Note that we present only models based on 
energy flow rates. Moreover, we provide dynamic extensions for 
models with thermal inertia on a scale of minutes. In contrast, 
models referring to electricity are assumed to be (quasi-)stationary, 
since the dynamics of electrical processes is usually on a scale of 
seconds. 

The model compendium aims to emphasize synergies and 
structural differences between optimization applications in energy 
supply systems. For instance, the incorporation of battery models 
intrinsically introduces nonsmoothness/nonconvexity in any opti- 
mization problem, cf. discussion in Appendix B.5.2 . Moreover, some 
degrees of freedom of a model depend on the type of component 
rather than the field of optimization: the input power/heat trans- 
fer rate is strictly determined by the output for conversion com- 
ponents, only bounded by the technical possible output for gen- 
eration components and loosely coupled to the output via stor- 
age level and capacity for storage components. However, other de- 
grees of freedom depend on the field of application and increase 
the complexity of the optimization problem significantly, even if 
the same model equations are used. E.g., the linearization scheme 
of the efficiency or COP in Appendix C.1 is sufficient for opera- 
tional optimization problems with a-priori known capacities, while 
it needs to be combined with Glover’s reformulation ( Glover, 1975 ) 
in design optimization problems where capacities are degrees of 
freedom. Besides, the choice between algebraic and dynamic opti- 
mization can influence the mathematical properties of the same 
physical variable. As an example, the roles of input and output 
heat transfer rate of a boiler are interchangeable for the optimizer 
within a quasi-stationary, algebraic problem, see Eq. (B.4a) , while 
their hierarchy is fixed in the dynamic model, see Eq. (B.5) . 

3. Optimization benchmarks 

As a proof-of-concept as well as to show the wide range of 
applications of the provided model compendium, we propose two 
case studies as optimization benchmarks: (1) a bi-objective design 
optimization accounting for economic and environmental criteria 
based on all components of the generic energy system depicted 
in Fig. 1 , and (2) a dynamic operational optimization of a sector- 
coupled energy supply system with fixed, optimal design. Both 
case studies consider the demand of six office buildings of type 
“OB”, two smaller office buildings of type “OBM”, and two exper- 
imental facilities “EF”, each with one thermal zone, see Appendix 
B.2.2 for details. More specifically, Appendix B.2.1 describes the pa- 
rameter identification of the thermal models for the office building 
“OB 1” as well as the experimental facility “EF 1” based on mea- 
sured temperature data. Figs. 2 and 3 show an excerpt of the simu- 
lated temperature and heating/cooling input Q dem 

z compared to the 
real measurement data for buildings “OB 1” and “EF 1”. The Coef- 
ficients of Variation of Root Mean Square Error CV(RMSE) (acc. to 

Coakley et al. (2014) ) of the indoor temperature are 1.2% for “EF1”
(for hourly data between 13 Jan and 11 Sep 2018) and 0.3% for 
“OB1” (for hourly data between 1 Jun and 31 Dec 2018). 

Example values for general parameters and inputs as well as 
all model equations can be found in Appendix B . Parameter values 
which differ for the two case studies are given in the following. 
This includes, e.g., bounds on capacities which are required for the 
design optimization and fixed to the nominal value for the opti- 
mization of the operation. 

We scale the values of system variables within the optimiza- 
tion models to a range of approximately 0 to 1 to avoid numerical 
problems. 

3.1. Design optimization 

Design optimization has to cope with large-scale optimization 
problems, in particular, due to the incorporation of combinato- 
rial decisions and operational optimization ( Frangopoulos et al., 
2002 ). Goderbauer et al. (2019) have even shown that the design 
problem of (distributed) energy supply systems is NP-hard. In this 
case study, we regard both minimum costs and minimum global 
warming impact, which further increases the complexity of the de- 
sign optimization problem. Thus, the models are linearized as de- 
scribed in Appendix C , allowing for continuous sizing of all compo- 
nents. Additionally, the time-varying input parameters are aggre- 
gated using the k-medoids method proposed by Bahl et al. (2018b) . 
Thereby, we employ 4 typical periods and 4 segments per typ- 
ical period with additional peak values for demands. The re- 
sulting sorted aggregated time-varying demands and prices are 
shown in Fig. 4 and are available at https://git.es2050.org/heci/ 
energy-benchmark in directory “3_1_Design_Optimization” in file 
“AggregatedTimeSeries.csv”. Despite the clear deviations between 
the aggregated and the original full time-series, aggregating time- 
series have been shown to lead to near-optimal solutions in studies 
( Bahl et al., 2018a; Baumgärtner et al., 2019 ). 

All components of the generic energy system depicted in 
Fig. 1 are considered for the supply of a campus comprising 
ten buildings. Only wind turbines are excluded as the instal- 
lation is often prohibited due to construction limits as, e.g., 
minimal distances to neighboring residential buildings. The val- 
ues of Voll (2013) are used for parameters regarding boilers 
BOI , combined heat and power engines CHP , absorption chillers 
AC , and compression chillers CC , while the parameter values of 
Baumgärtner et al. (2019) are taken for the photovoltaic units 
PV , heat pumps HP , batteries BAT , and thermal energy stor- 
age units T ES , see Tables 1 and 2 . Note that the correspond- 
ing references had demonstrated the linearization to be an ade- 
quate representation of the nonlinear models. Example values for 
linearized part-load behavior and linearized investment costs are 
given in Tables C.1 and C.2 , respectively. Please note that cyclic 
conditions apply for the operation of the thermal storage units 
as well as the battery in each typical period. Further, charge and 
discharge of all storage units are suppressed in the time steps 
representing the additional peak demand values. We assume a 
constant global warming impact for the electricity mix of the 
grid gwi el = 561 g CO 2 −eq . / kWh . As an alternative, a time depen- 
dent global warming impact based on Baumgärtner et al. (2019) is 
provided for the considered time-series as well, see “Aggregat- 
edTimeSeries.csv” at https://git.es2050.org/heci/energy-benchmark 
in “3_1_Design_Optimization”. When electricity is fed into the 
grid, we assume a credit for the global warming impact GWI 

(B.1.2) following the idea of the avoided burden ( Baumann and Till- 
man, 2014 ). Moreover, we employ gwi 

fuel 
= 244 g CO 2 −eq . / kWh for 

the specific global warming impact of purchased gas as well as 
time horizon τ h = 4 a and interest rate γ5 = 8 % for the calculation 
of the present value factor PVF ( Majewski et al., 2017 ). The interest 
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Fig. 1. Generic energy system with a free number of component units for the supply of a virtual real-world campus of office buildings and experimental facilities 

Table 1 

Component specifications 

Comp. Min. capacity Max. capacity Min. load fraction maintenance factor 

Q min 
i [ kW ] Q max 

i [ kW ] λ
out 
i, 1 [ −] γ4 ,i [a 

−1 ] 

BOI 100 2000 0.2 0.015 
CHP 1 100 1400 0.5 0.1 
CHP 2 1400 2300 0.5 0.1 
CHP 3 2300 3200 0.5 0.1 
AC 100 2000 0.2 0.01 
CC 400 10000 0.2 0.04 
PV 5 550 0.0 0.01 
HP 5 200 0.2 0.01 
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Fig. 2. Comparison of simulation and measurements for the original office building “OB 1”

Table 2 

Storage component specifications 

Comp. Min. capacity Max. capacity maintenance factor 

E min 
i [ kW h ] E max 

i [ kW h ] γ4 ,i [a 
−1 ] 

BAT 0 2000 0.025 
T ES cool 0 25000 0.01 
T ES heat 0 115000 0.01 

rate in application cases strongly varies; other authors employ 5 % 
for example ( Schütz et al., 2017 ). 

To solve the design optimization problem, we apply the auto- 
mated super-structure-generation approach from Voll et al. (2013) . 
This approach successively performs superstructure optimization 
until the objective function value does not further improve. In each 
optimization, the superstructure of the energy supply system is en- 
larged by one unit for each component type. Although we consider 
three sizes of combined heat and power engines CHP , see Table 1 , 
we only allow one additional CHP unit rather than one for each 
size when increasing the superstructure by one unit. To decrease 
the computational effort, we aggregate the roof area of the office 
buildings and of the experimental facilities, respectively, and we al- 
low at most one photovoltaic unit and one storage component for 
each building type. Note that the values for the linearized invest- 
ment costs are not changed despite the aggregation, since there is 
no significant economy of scale for photovoltaic components. 

The design optimization approach is implemented in GAMS 
24.7.3 ( McCarl and Rosenthal, 2016 ). We choose GAMS as it is 
one of the standard modeling environments. To solve the prob- 
lem, CPLEX 12.6.3.0 ( IBM Corporation, 2015 ) is used employing 
an optimality gap of 0.5 %. A GAMS file containing the problem 

statement after automated super-structure generation and using 
the single objective of total annualized costs, namely “Model.lst”, 
can be found at https://git.es2050.org/heci/energy-benchmark in 
“3_1_Design_Optimization”. Therein, we also provide a correspond- 
ing pyomo file generated automatically via the GAMS convert func- 
tion, along with the variable mapping. Pyomo has the advantage 
that it is open source. 

We perform a bi-criteria optimization, minimizing the total an- 
nualized costs TAC and the global warming impact GWI employ- 
ing the augmented ε-constraint method ( Mavrotas, 2009 ). The re- 

sulting trade-off in the Pareto front as well as the corresponding 
Pareto-efficient designs are shown in Fig. 5 . 

The global warming impact GWI decreases for designs with a 
tri-generation system in place of separately operating boilers BOI 

and compression chillers CC with additional purchase of electric- 
ity from the grid. Low- GWI energy systems employ a higher num- 
ber of CHP engines in combination with the installation of absorp- 
tion chillers AC , which allows for simultaneous heating and cool- 
ing supply while providing electricity for on-site demands or the 
grid. As a result, the system is even able to reach a negative global 
warming impact GWI , as the avoided burden by feeding in elec- 
tricity ( Appendix B.1.2 ) is higher than the global warming impact 
induced by the consumption of fuel on-site. 

The increasing investment in a higher number of smaller con- 
version units and larger storage units enables a more ecological 
operation by utilizing highly-efficient operational points and load 
shifting, compare Fig. 5 (b). Moreover, larger photovoltaic units are 
installed for a more climate-friendly energy supply. The maximum 

PV area is reached at the third point on the Pareto front with de- 
creasing global warming impact GWI . 

Herein, we do not consider the selection of a final design by the 
decision maker. This selection can be done with a wide range of 
decision supporting tools, see, e.g., Jing et al. (2019) . For the syn- 
thesis of distributed energy supply systems and other two-stage 
optimization problems, for instance, the flex-hand approach auto- 
matically selects a highly flexible design in operation such that 
the final design performs well regarding all considered criteria 
( Hollermann et al., 2019 ). 

3.2. Operational optimization 

The second case study pertains to the offline optimal control of 
nominal operation based on realistic simulation data and parame- 
ter values as well as the dynamic models given in Appendix B with 
the extension discussed in Appendix D . The energy supply sys- 
tem considered is given by the cost-optimal solution of the design 
optimization problem discussed in Section 3.1 . We particularly fo- 
cus on the parallels between thermal energy storage (TES) and the 
thermal inertia in buildings. 

The feasibility of the design for an energy system with either 
explicit or implicit storage is guaranteed by excluding TES units 
in the design optimization. Instead, the size of the TES unit is 
adapted to heat transfer capacity Q 

max 
= 100 kW of Building “OB 
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Fig. 3. Comparison of simulation and measurements for the original experimental facility “EF 1”

Fig. 4. Sorted full as well as sorted time-aggregated energy demands and prices used in the design optimization 

1”, cf. Table B.3 , by choosing nominal capacity E nom 
i = 1h · Q 

max 
= 

100 kW h , cf. Appendix B.5.1 . The optimal design comprises one 
boiler unit with nominal capacity Q 

nom 
i = 530 kW , i ∈ BOI and 

minimum load fraction λmin 
i = 0 . 2 , i ∈ BOI , one CHP unit with 

nominal capacity Q 
nom 
i = 470 kW , i ∈ CHP and minimum load frac- 

tion λmin 
i = 0 . 5 , i ∈ CHP , as well as PV units covering the maxi- 

mum possible surface area of the solar panels on the buildings, 
cf. B.4.1 . For the energy conversion components, time constants 
τ i = 0 . 1 h , i ∈ BOI ∪ CHP are chosen due to their fast response in 
reality. 

We use weather data of Stuttgart in the winter week November 
26, 2018 to December 02, 2018 ( DWD Climate Data Center (CDC), 
2018 ) and the price data of a similar week during the year, namely 
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Fig. 5. Designs of Pareto-efficient solutions based on possibly installed components 
shown in Fig. 1 

time points 7896h - 8063h taken from Bahl et al. (2018b) , see 
Fig. 6 . 

The controls are the heat transfer input of the boiler and the 
CHP unit, the power provided by the PV components clustered in 
one unit for all (modified) office buildings and one for both ex- 

perimental facilities, as well as the purchased electricity at any 
considered time point. The initial values of the load fractions of 
boiler and CHP are optimized. The TES is set to be half-full at 
the beginning to allow for both charging and discharging. The 
heat transfer rate exchanged with the TES is the difference be- 
tween the given demand and the heat transfer rate provided by 
the boiler and the CHP unit. We minimize the total costs subject to 
the model constraints reported in Appendix B . Note that violations 
of path constraints may occur between discretization points, com- 
pare Fu et al. (2015) . Besides, we do not impose periodic boundary 
conditions to not further restrict the optimizer. Since weather is 
not week-periodic, periodic operation is not expected to be opti- 
mal. Other researchers, e.g., ( Ghobeity and Mitsos, 2012 ) have im- 
posed periodic boundary conditions to avoid discharging the stor- 
age. Our model compendium enables variations of the benchmark 
to account for such boundary conditions. Note however that peri- 
odic boundary conditions and oscillating systems bring substantial 
challenges ( Wilkins et al., 2009 ). 

For the dynamic optimization of the operation, the dynamic 
optimizer DyOS ( Caspari et al., 2019; DyOS, 2019 ) calling local 
nonlinear optimizer SNOPT ( Gill et al., 2005 ) and integrator IDAS 
( Serban et al., 2018 ) is employed. We use feasibility tolerance 
of 0.01 and optimality tolerance of 0.001. We write the model 
in Modelica. The motivation is that it is open source and sup- 
ported by a variety of commercial and open-source simulation 
and optimization tools, including our in-house solver DyOS. In 
nonconvex dynamic optimization problems, a good initial guess 
is typically required for convergence of the optimizer. While in 
principle deterministic global methods exist since more than a 
decade ( Singer and Barton, 2006 ), these are far from being ap- 
plicable to such systems. An alternative are heuristic local meth- 
ods such as multistart, which has been applied to energy sys- 
tems, e.g., ( Ghobeity and Mitsos, 2012 ). However, a challenge is 
that many runs fail to converge. Herein, we find the initial point 
based on ad-hoc adaptations of intermediate optimization results. 
Flat Modelica files containing the dynamic optimization prob- 
lem as well as the dynamic simulation model for building “OB 
1” are given by “OptModel.mo” and “OB1SimModel.mo”, respec- 
tively, at https://git.es2050.org/heci/energy-benchmark in directory 
“3_2_Optimal_Control”. 

The CHP over-fulfills the electricity demand when the gas price 
is low and the gas demand is high compared to the electricity de- 
mand, cf. Fig. 7 (b). Thus, no purchase of electricity is required and 
only the volatility of the sale price of electricity can affect the op- 
timal solution. In this way, the TES enables a higher CHP load in 
periods with higher sale prices for electricity. For instance Fig. 7 (a) 
shows the CHP extended full-load period within interval [18h, 24h] 
and the load fraction peak within interval [150h, 168h]. In contrast 
to that, the boiler is only used during the high demand periods of 
the workdays, i.e., from 0h to approximately 120h. To satisfy the 
remaining heat demand, the boiler is run at about 30 % to 40 % 
load, see Fig. 7 c. Note that the operation with this low load frac- 
tion is already highly efficient, cf. Fig. D.1 . At the weekend, the bi- 

Fig. 6. Electricity and gas costs taken from Bahl et al. (2018b) 
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Fig. 7. Optimal operation of an energy supply system for heating and electricity demands of 10 buildings. Note that the transfer rates in (a) and (b) are additive. 

Fig. 8. Internal temperature of Building “OB1” based on simulated heat input and simulated heat input plus optimized heat transfer rate of TES 

generation capabilities of the CHP are further exploited while the 
boiler drops instantaneously below its minimum load fraction and 
is therefore turned off. 

Finally, we transfer the capability of the TES as explicit storage 
to Building “OB 1” as implicit storage. In particular, the optimized 
heat transfer rate interchanged with the TES Q i , i ∈ T ES is added 
to heating demand Q heat,dem given in B.2.2 which has been used for 
the dynamic optimization. The internal temperature within Build- 
ing “OB 1” is simulated based on heat demand Q heat,dem , i.e., for 
an energy system with an explicit storage only, and the combined 
demand Q heat , dem + Q i , i ∈ T ES , i.e., for an analogous energy sys- 
tem with an implicit storage only. Fig. 8 shows that the transfer of 
the heat transfer rate Q i , i ∈ T ES from the TES to Building “OB 1”
leads to visible but for human hardly sensible oscillations in the 
range of up to 0.2K. 

4. Conclusion 

This article presents a model compendium for common com- 
ponents of energy supply systems present in industrial or re- 
search campus areas. Moreover, the included validated building 
models rely on real-world data from the Campus North of the 
Karlsruhe Institute of Technology and from the Forschungszentrum 

Jülich ( HECI, 2019 ). We provide one model formulation on the scale 
of energy flow rates for each component considered. The model 
compendium is structured in terms of notation and modeling prin- 
ciples such that it can be extended by additional components, e.g., 
solar-thermal collectors and power-to-X technologies, or by includ- 
ing high-fidelity models, e.g., for gas grids and thermal grids. 

The compendium addresses requirements of different fields of 
applications, namely the optimization of design, operation, and 
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control of energy supply systems. Hence, it includes both quasi- 
stationary and dynamic models as well as linearization schemes. 
The notation of all given models is unified for more transparency 
concerning synergies and structural differences of the different 
fields of applications. This way, we aim to support the transfer of 
models and methods between the different fields of applications. 
Moreover, the unified modeling framework allows investigating the 
influence of different formulations on computation times and on 
the accuracy of solutions. For instance, two corresponding opti- 
mization problems can be obtained for the same individual energy 
system by replacing the quasi-stationary model of one component 
by the respective dynamic model. 

Additionally, we propose two optimization benchmarks exploit- 
ing the wide range of presented model formulations. In the first 
case study, a bi-criteria design optimization regarding total an- 
nual costs and global warming impact is performed for the generic 
energy system based on linearized quasi-stationary models. The 
results of the design optimization hint at the benefit of photo- 
voltaic components, storage systems as well as the synergy of tri- 
generation for an ecological energy supply. In the second case 
study, the operational optimization of an energy supply system 

based on nonlinear dynamic models emphasizes the possibility 
to exploit varying electricity prices with the help of a combined 
heat and power engine and a thermal energy storage. For the 
sake of illustration, we also touch upon the role of thermal iner- 
tia of buildings via subsequent simulations. The case studies con- 
stitute substantial numerical challenges, e.g., for testing global so- 
lution methods for the operational optimization. Both can be eas- 
ily adapted, e.g., to allow for different boundary conditions for the 
operation. 

Notably, the benchmarks come with a complete set of ready- 
to-use input data and the respective model files, namely a GAMS 
( McCarl and Rosenthal, 2016 ) listing file for the design optimiza- 
tion and a Modelica ( Mattsson and Elmqvist, 1997 ) file for the dy- 
namic optimization of operation, available at https://git.es2050.org/ 
heci/energy-benchmark . We also provide equivalent Pyomo files. 
The data sets may be extended by real-world measurements of de- 
mands and their corresponding price and weather data to account 
for model-plant-mismatch or real-world uncertainties. 

The novelty of our approach is the definition of suitable bench- 
marks, writing consistent models for important unit operations al- 
lowing for various use cases, and combining these models with 
useful data. We utilize established solution methods and the mod- 
els are not fundamentally different from existing state-of-the-art 
models. We envision the modular compendium, the nominal data 
set, and the benchmarks to enable transparent comparisons of op- 
timization methods for sector-coupled energy systems. 
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Appendix A. Notation 

The variables, see Table A.1 , are specified with the help of su- 
perscripts, see Table A.3 , and assigned to certain sets via subscripts, 
see Table A.2 . Apart from this, we omit explicit time-dependency 
in equations for the sake of simplicity unless it may create confu- 
sions. Thus, variables which depend explicitly on time are written 
in standard font, e.g., load fraction λ, while all other variables are 
represented by bold symbols, e.g., minimum load fraction λmin or 
efficiency η(λ) . Whenever time-dependent variables occur in equa- 
tions, these equations have to be satisfied at any considered time 
point t ≥ 0. 

Table A.1 

List of variable and parameter symbols 

Symbol Unit Description 

β context dependent slope of line segments used in 
linearization 

γ context dependent miscellaneous parameters 
ǫ – emissivity 
η – coefficient of performance or 

efficiency, resp. 
ϑ

◦ inclination angle 
θ rad phase angle of electrical voltage 
λ/ λ/ l – load fraction 
ρ kgm −3 density 
σ W m −2 K −4 Stefan Boltzmann constant 
τ s time constant 
φ ◦ azimuth orientation 

a – absorptivity 
A m 2 area 
b – indicator for active line segment 
c EUR/(kWh) tariffs for purchasing/selling Energy 
C JK −1 heat capacity 
d W auxiliary variable to linearize bilinear 

product 
E / E kWh (saved) energy 
I W m −2 solar irradiance 
m / m kg mass of working fluid 
M kg s −1 mass flow rate 
P / P W electric power 
Q / Q W thermal energy flow rate 
T / T K temperature 
�T K temperature difference 
V m 3 volume 

CAPEX EUR investment costs 
gwi g CO 2 −eq . / kWh global warming impact of energy 

source 
GWI kg CO 2 −eq . /a global warming impact of energy 

supply system 

PVF a −1 present value factor 
TAC EUR/a total annualized costs 
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Table A.2 

List of sets and subscripts 

Symbol Description 

f ∈ F set of mass flows 
j ∈ J set of intervals for piece-wise linearization 
s ∈ S set of building surfaces 
t ∈ T set of time points 
z ∈ Z set of thermal zones 
i ∈ C set of conversion units, i.e., C = AC ∪ BOI ∪ CHP ∪ CC 

i ∈ G set of generators in the electrical grid G ⊆ N

i ∈ N node set of the electrical grid 
i ∈ U superset of all units of any component: 
i ∈ AC set of absorption chiller units 
i ∈ BAT set of battery units 
i ∈ BOI set of boiler units 
i ∈ CC set of turbo-driven compression chiller units 
i ∈ CHP set of combined heat and power engine (CHP) units 
i ∈ HP set of heat pump units 
i ∈ PV set of photovoltaic (PV) units 
i ∈ T ES set of thermal energy storage units 
i ∈ WT set of wind turbine units 

Table A.3 

List of superscripts 

Symbol Description 

air air 
amb ambient 
cool belonging to cooling grid / period 
dem demand 
el belonging to electric grid 
gen generation 
heat belonging to heating grid / period 
in input or inlet 
irr irradiance 
k concerning air exchange rate 
lb lower bound 
loss losses 
max maximum 

min minimum 

nom nominal 
out output or outlet 
th thermal (cooling or heating) 
tot total 
U concerning U value 
ub upper bound 
0 reference value 

Appendix B. Model compendium 

In this section, economic and environmental evaluation criteria 
for design, operation, and control of a sector-coupled energy sup- 
ply system as well as (non-)linear quasi-stationary and dynamic 
models are given for common components. This includes mod- 
els for office buildings and experimental facilities; models for the 
conversion components boiler ( BOI ), combined heat and power 
engine ( CHP ), absorption chiller ( AC ), turbo-driven compression 
chiller ( CC ), and heat pump ( HP ); models for photovoltaic units 
( PV ) and wind turbines ( WT ) clustered as generation compo- 
nents; models for thermal energy storage ( T ES ) as well as batter- 
ies ( BAT ); and, finally, models for the thermal and the electricity 
grid coupling these components. 

The linearization scheme for the nonlinear efficiency curves and 
investment costs is given in Appendix C . Finally, an extension of 
the dynamic model of boiler and CHP for the inclusion of a min- 
imum load fraction without the introduction of binaries or non- 
smoothness is given in Appendix D . 

Table B.1 

Parameter values of the con- 
version components taken from 

Baumgärtner et al. (2019) 

Components CAPEX 0 i /e γ6, i 

BOI 2701.6 0.4502 
CHP 1 9332.6 0.539 
CHP 2 9332.6 0.539 
CHP 3 9332.6 0.539 
AC 8847.5 0.4345 
CC 444.3 0.8732 
PV 4264.3 0.9502 
HP 1654.7 0.6611 
T ES cool 57.5 0.9037 
T ES heat 83.8 0.8663 
BAT 2116.1 0.8382 

B1. Evaluation criteria 

In the following Sections B.1.1 and B.1.2 we introduce the total 
annualized costs TAC and the global warming impact GWI as eval- 
uation criteria. 

B1.1. Total annualized costs 

Total annualized costs (TAC) are an economic criterion for the 
evaluation of an energy supply system with respect to operational, 
investment, and maintenance costs. The TAC can be calculated by 

TAC = 

∑ 

t∈T 

[ 

8760 h · τ dur (t) ·

(

c fuel (t) · Q 
fuel , in (t) + c el , buy (t) ·

P buy (t) − c el , sell (t) · P sell (t) 

)] 

+ 

∑ 

i ∈U 

(

1 

PVF 
+ γ4 ,i 

)

· CAPEX i 

with duration of time step 8760 h · τ dur per year τ dur , prices 
c fuel , c el,buy , c el,sell , purchased energy rate with respect to natural gas 
Q fuel,in , purchased and sold electricity P buy and P sell , respectively, 
present value factor PVF , factor for maintenance costs per year γ4, i , 
and capital expenditure CAPEX i . 

The present value factor can be calculated by 
( Broverman, 2010 ) 

PVF = 
( γ5 + 1) τ

h 
− 1 

( γ5 + 1) τ h 
· γ5 

with interest rate γ5 , e. g., γ5 = 8 % , and time horizon τ h , e. g., 
τ h = 4 a . In this study, we obtain the CAPEX by the power law of 
capacity Smith (2005) 

CAPEX i = CAPEX 
0 
i ·

(

Q 
nom 
i 

Q 0 
i 

)γ6 ,i 

, (B.1) 

with reference capital expenditure CAPEX 
0 
i corresponding to the 

reference capacity Q 0 
i 

of 1kW, installed nominal capacity Q nom 
i 

, 

and the component dependent constant γ6, i , see for example 
Table B.1 . The linearization of the nonlinear power law (B.1) is ex- 
plained in C.2 . 

Instead of the total annualized costs TAC , any other economic 
objective function could be chosen. However, when regarding eco- 
nomic and ecologic criteria, the total annualized costs TAC lead to 
Pareto fronts with low environmental impacts compared to other 
economic objective functions ( Pintari ̌c and Kravanja, 2015 ). 

B1.2. Global warming impact 

An environmental evaluation criterion of energy supply systems 
is given by its global warming impact 
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Fig. B.1. Heat flow scheme for building with relevant contributions 

GWI = 

∑ 

t∈T 

8760 h · τ dur (t) ·

[ 

gwi 
fuel 

· Q 
fuel , in (t) + gwi el (t) ·

(

P in (t) − P out (t) 
)

] 

, 

where gwi fuel and gwi el are the specific global warming impacts 
of the energy sources, for example values see Section 3.1 or 
Federal Environment Office (2018) . Note that the specific global 
warming impact of purchased electricity is varying remarkably 
over time. We follow the idea of the avoided burden ( Baumann and 
Tillman, 2014 ) and assume a credit for the global warming im- 
pact GWI when electricity is fed into the grid. As the operation 
usually affects the global warming impact significantly higher than 
the manufacturing of the components ( Guillén-Gosálbez, 2011 ), we 
only consider the contribution of the operation. 

B2. Buildings 

The models of buildings origin from the energy balance equa- 
tion 

C z 
dT z 
dt 

= Q 
in , tot 
z − Q 

out , tot 
z (B.2) 

based on the following assumptions: 

(A1) Only internal energy is considered. In particular, the ki- 
netic energy of the system is neglected and potential energy 
cancels out. 

(A2) The change of internal energy equals the heat flow, i.e., no 
additional work is applied to the system. 

(A3) The mass balance is fulfilled. 

As sketched in Fig. B.1 , the physical effects which most strongly 
influence the temperature within the buildings are identified as 

(P1) Heat transport mechanisms with external air of tempera- 
ture T amb via air exchange based on air change rate γamb , k 

7 
and heat capacity C air, z as well as heat transfer through 
walls, windows, roof, and floor based on heat transfer co- 
efficient γamb , U 

7 , 

(P2) Heat input by solar irradiance Q irr s,z on the building surface 

s with the solar energy absorption coefficient γ irr 
8 according 

to Harb et al. (2016) , and 
(P3) Installed heating/cooling system with heating/cooling input 

Q dem 
z with heating factor γ th 

9 . 
(P4) Heat capacity C z takes into account internal walls, air, ex- 

ternal walls, roof, and basement floor. However, it is only a 
fraction of the sum of all heat capacities C tot of the com- 
ponents of the building. This is presumably the case, since 
the outer shell is stronger coupled to the ambient tempera- 
ture than to the inside and therefore does not significantly 
contribute to the indoor climate. Due to missing data, the 

Fig. B.2. Dimensions of modeled buildings 

verification of this hypothesis is subject to future work. The 
fraction C z 

C tot 
is determined by the parameter identification 

in B.2.1 with γ th 
9 kept ≤ 1. When transferring the model 

to other buildings, a first approximation for C z would be to 
calculate C tot of the new building multiplied by a ratio C z 

C tot 

from Table B.3 . 

Incorporating physical effects (P1) to (P4) into Eq. (B.2) yields a 
gray-box model equation for each thermal zone z = 1 , ..., n z , n z = 

card (Z) 

C z 
dT z 
dt 

= ( γamb 
7 ) z ·

(

T amb − T z 
)

+ γ irr 
8 

∑ 

s 

(

Q 
irr 
s,z ( A s,z , φs ) 

)

+ γ th 
9 Q 

dem 
z 

(B.3) 

with ( γamb 
7 ) z = γamb , U 

7 ·
∑ 

s ∈S z 
A s + γamb , k 

7 ·
C air , z 
3600 s 

and S z = 
{ east , south , west , north } ∪ { roof if contained by Zone z } 
∪{ floor if contained by Zone z } . 

Eq. (B.3) provides a dynamic equation for differential state T z 
in dependence of control input Q dem 

z as well as time-varying pa- 
rameters T amb and Q irr s,z , s ∈ S for any thermal zone z ∈ Z . Example 
values are given in Section B.2.1 . 

The model is based on Park et al. (2011) . It is chosen to be as 
simple as reasonable for easy integration in different use cases and 
has been extended by considering solar irradiance. The parameter 
values given serve as first orientation for researchers without ac- 
cess to building models. It is generally advisable to estimate the 
parameters on data as the parameters vary depending on the char- 
acteristics of the buildings. The model can be adopted to different 
building sizes or orientations by changing the surface areas and 
the dependent solar irradiance. Moreover, in the case studies, we 
consider simple cuboid shape. If the shape of the building is dif- 
ferent, it would be sensible to estimate the parameters to temper- 
ature measurements and/or explicitly take self-shading effects into 
consideration. 

Note that parameter identification via linear regression of aver- 
aged measurement data of the indoor temperature shows that the 
consideration of additional factors like human body heat, electrical 
devices, wind velocity, coupling between different zones, and wall 
temperatures leads to worse identification results due to linear de- 
pendencies displayed by high condition numbers. 

B2.1. Parameter identification 

The parameters ( γamb 
7 ) z , γ irr 

8 , and C z of the gray-box model are 

fitted to measured temperature data T z with γ th 
9 ≤ 1 and the input 

time series T amb , Q dem 
z , and Q irr s,z . In fact, dimensions and common 

information of the two original buildings, the office building “OB 
1” and the experimental facility “EF 1”, are retrieved from internal 
reports as shown in Fig. B.2 and Table B.2 . 

Moreover, ambient temperature T amb is given by weather data 
of year 2018 from Deutscher Wetterdienst for Stuttgart ( DWD Cli- 
mate Data Center (CDC), 2018 ). Solar irradiance I s is calculated us- 
ing the horizontal global irradiance and the horizontal diffuse irra- 
diance of the weather data as well as considering the orientation 
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Table B.2 

Common information of modeled buildings and virtual PV, cf. B.4.1 

Attribute Off. bldg. (OB) Off. bldg. mod. (OBM) Exp. fac. (EF) 

Construction year 1973 1973 2011 
Orientation φnorth 13 ◦ 13 ◦ 13 ◦

Position N49 ◦5 ′ 43.9872”, E8 ◦26 ′ 1.2451”
Stories 4 3 1 
Width w [m] 12.6 12.6 12.2 
Height h [m] 13.3 10.1 5.9 
Length l [m] 61.4 61.4 20.0 

Heat capacity air C air [ MW sK −1 ] 11.4 8.7 1.8 
T max 
z Winter [ ◦C] 24 24 24 
T min 
z Winter [ ◦C] 18 18 16 
T max 
z Summer [ ◦C] 26 26 26 

T min 
z Summer [ ◦C] 20 20 18 

Orientation φPV half of the units 103 ◦ , other half 283 ◦ 193 ◦

Inclination ϑPV 10 ◦ 30 ◦

Table B.3 

Parameters of buildings 

Building C z 
C z 
C tot γamb 

7 γamb , U 
7 γamb , k 

7 γ irr 
8 γ th 

9 Q dem , max 
z 

[MW s/K] [–] [W/K] [W/(m 2 K)] [–] [–] [–] [kW] 

OB 1 1530.4 0,529 3651 0,545 0,545 0.037 1 100 
OB 2 1607,3 0,556 4789 0,611 0,833 0.033 1 100 
OB 3 1446.5 0.500 5015 0,750 0,750 0.045 1 100 
OB 4 1522.7 0.526 3480 0,658 0,368 0.037 1 100 
OB 5 1701.8 0.588 4326 0,647 0,647 0.047 1 100 
OB 6 1522.7 0.526 2833 0,474 0,368 0.037 1 100 
OBM 1 1201.1 0.526 3450 0,632 0,632 0.037 1 80 
OBM 2 1267.9 0.556 3872 0,611 0,833 0.033 1 80 
EF 1 98.5 0,443 713 0,518 0,518 0.053 1 18 
EF 2 98.5 0,443 671 0,487 0,487 0.049 1 18 

of each surface s ∈ S by angle φs according to Kreider et al. (2010) . 
The two original buildings have no solar panels installed, therefore 
possible shading effects are neglected. Finally, solar heat input Q irr s,z 

is the product of solar irradiance I s and the respective area A s,z for 
any surface s ∈ S and thermal zone z ∈ Z . 

The values resulting from the parameter identification process 
with one thermal zone are given in Table B.3 . Note that the pa- 
rameters for buildings “OB 1” and “EF 1” are identified based on 
real measurement data. For the parameters of “OB 2” to “OB 6” as 
well as “OBM 1” and “OBM 2”, intervals are predefined according 
to empirical considerations. Their parameters approximately follow 

a uniform distribution within those intervals. The parameters of 
“EF 2” are slight variations of those of “EF 1”. The following Section 
B.2.2 depicts the simulation of the heating/cooling demand. 

B2.2. Simulation of building demands 

For simulating realistic building demands 3 , the common ap- 
proach of a standard PI controller representing a thermostat is 
used for the control of the buildings ( Peeters et al., 2008 ). The 
deviation from desired temperature T 0 is the input. The feedback 
loop for any thermal zone z ∈ Z is defined by 

Q 
dem 
z = sat Q 

ub 
z 

Q lb z 

(

γ10 ,z 

(

T z − T 0 z 
)

+ γ11 ,z 

∫ t 

0 

(

T z (τ ) − T 0 z 
)

d τ

)

with saturation 

sat Q 
ub 

Q lb 
( u ) = 

 

 

 

Q 
ub 
z , if u > Q 

ub 
z 

u , if Q 
lb 
z ≤ u ≤ Q 

ub 
z 

Q 
lb 
z , if u < Q 

lb 
z 

. 

3 These demands are often referred to as building loads in the community for 
modeling, simulation, and optimization of buildings. 

Table B.4 

Control parameters of buildings 

Building T 0,cool T 0,heat NS WES γ10 γ11 
[ ◦C] [ ◦C] [–] [–] [kW/K] [W/(K s)] 

OB 1 23 21 true true 100 0 
OB 2 23 22 true true 100 0.1 
OB 3 24 20 false true 100 0 
OB 4 23 21 true false 100 0 
OB 5 23 22 true true 100 0 
OB 6 23 23 false false 100 0 
OBM 1 23 21 true true 100 0 
OBM 2 23 22 true true 100 0.1 
EF 1 23 18 true false 10 0,2 
EF 2 21 19 false false 10 0,2 

For control and optimization, the internal temperatures have 
to stay within comfort zones T min 

z ≤ T z ≤ T max 
z and the heat- 

ing/cooling input within its technical limitations 0 ≤ | Q dem 
z | ≤

Q 
dem , max 
z . Table B.4 provides the controller gains γ10, z for the pro- 

portional term and γ11, z for the integral term as well as the used 

reference temperatures T 0 z . If the parameter night shift (NS) is true, 
the temperature set point is changed by +1K during the night in 
cooling periods and −1K during the night in heating periods. Sim- 
ilarly, if the parameter weekend shift (WES) is true, the temper- 
ature set point is changed ± 1K on weekends and holidays. The 

saturation bounds are given by Q 
ub 
z 

winter 
= Q 

dem , max 
z , Q 

lb 
z 

winter 
= 

Q 
ub 
z 

summer 
= 0 , and Q 

lb 
z 

summer 
= −Q 

ub 
z 

winter 
. 

Both electrical and thermal demand of a campus consisting of 
6 office buildings of type “OB”, 2 smaller office buildings of type 
“OBM” (office building modified), and 2 experimental facilities “EF”
are simulated based on Eq. (B.3) and the model parameters dis- 
cussed in B.2.1 , see Fig. B.3 . Note that the heating demand is given 
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Table B.5 

Example values for efficiency and COP curves of the considered conversion components 

Formula and values Reference 

Boiler i ∈ BOI 

ηheat 
i (λi ) = 

21 . 75378 ·λ3 
i −7 . 00130 ·λ2 

i +1 . 39731 ·λi −0 . 07557 
20 . 66646 ·λ3 

i −5 . 34196 ·λ2 
i +0 . 67774 ·λi +0 . 03487 ·η

nom , heat 
i Voll (2013) based on Fabrizio (2008) 

ηnom , heat 
i = 0 . 8 Voll (2013) 

Combined heat and power engine i ∈ CHP 

ηheat 
i (λi ) = 

(

−0 . 0768 · λ2 
i − 0 . 0199 · λi + 1 . 0960 

)

· ηnom , heat 
i ( Q nom i ) Approx. to producer information 

ηel 
i (λi ) = 

(

−0 . 2611 · λ2 
i + 0 . 6743 · λi + 0 . 5868 

)

· ηnom , el 
i ( Q nom i ) Approx. to producer information 

ηnom , heat 
i ( Q nom i ) = −3 . 55 · 10 −5 ·

Q nom i 
1 kW + 0 . 498 Voll (2013) 

ηnom , el 
i ( Q nom i ) = 3 . 55 · 10 −5 ·

Q nom i 
1 kW + 0 . 372 Voll (2013) 

ηnom , tot = 0 . 87 Voll (2013) 
Heat pump i ∈ HP 

ηheat 
i (λi ) = 0 . 36 /ηcarnot Approx. to data sheet Dimplex (2019) 

ηcarnot = 1 − T 
T HP ; T HP = 273 . 15 + 60 K 

Absorption chiller i ∈ AC 

ηcool 
i (λi ) = λi 

0 . 83330 ·λ2 
i −0 . 08330 ·λi +0 . 24999 ·η

nom , cool 
i Voll (2013) based on Fabrizio (2008) 

ηnom , cool 
i = 0 . 67 Voll (2013) 

Turbo-driven compression chiller chiller i ∈ CC 

ηcool 
i (λi ) = 

(

0 . 8615 · λ3 
i − 3 . 5494 · λ2 

i + 3 . 6790 · λi + 0 . 0126 
)

· ηnom , cool 
i Voll (2013) 

ηnom , cool 
i = 5 . 54 Voll (2013) 

Fig. B.3. Aggregated demand data for the different types of buildings and a complete campus 
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by positive thermal demand values and the cooling demand by the 
absolute of the negative thermal demand values. 

The aggregated electrical demand profile for the ten buildings 
is the sum of 1) three generated demand profiles following the G0 
demand profile of BDEW (2019) with Saturdays treated like Sun- 
days as well as different offsets and gains for each demand profile 
for three OB/OBM buildings; 2) measured data of “OB 1” for the 
years 2014 to 2018 which are shifted to start at the same day of 
week in order to retrieve five more OB/OBM demand profiles; and 
3) measured data of “EF 1” for the years 2017 and 2018 to get two 
demand profiles for the EF buildings. 

Weather and demand data (“WeatherAndDemandTime- 
Series.csv”) as well as the data shown in Figs. 2 and 3 (“Compar- 
isonMeasSimTimeSeries.csv”) are available at https://git.es2050. 
org/heci/energy-benchmark in directory “App_Weather_And_ 
Demand”. 

B3. Conversion components 

The quasi-stationary model for general conversion components 
C = BOI ∪ CHP ∪ HP ∪ AC ∪ CC is given as in 

Voll et al. (2013) by 

Q 
out 
i = ηheat / cool 

i 
(λi ) · Q 

in 
i ∀ i ∈ C \ HP , (B.4a) 

Q 
out 
i = ηheat 

i (λi ) · P 
in 
i ∀ i ∈ HP , (B.4b) 

P out i = ηel 
i (λi ) · Q 

in 
i ∀ i ∈ CHP , (B.4c) 

Q 
out 
i = λi · Q 

nom 
i ∀ i ∈ C , (B.4d) 

λ
min 
i ≤ λi ≤ 1 ∀ i ∈ C , (B.4e) 

Q 
min 
i ≤ Q 

nom 
i ≤ Q 

max 
i ∀ i ∈ C , (B.4f) 

with energy balances based on respective efficiencies (B.4a) to 
(B.4c) , Eq. (B.4d) determining load fraction λ, bounds (B.4e) and 
(B.4f) . Note that η is the efficiency for boilers and CHPs, while it is 
the coefficient of performance (COP) for chillers and heat pumps. 

For obtaining a dynamic model, Eq. (B.4a) can be replaced by 

d λi 

dt 
= 

1 

τ i 
·

(

ηheat / cool 
i 

(λi ) ·
Q in 
i 

Q 
nom 
i 

− λi 

)

∀ i ∈ C , (B.5) 

see Sass and Mitsos (2019) for more details. Note that this dy- 
namic model is based on a simplified energy balance that con- 
siders heat transfer rates rather than temperatures. Furthermore, 
all heat losses are assumed to be proportional to the input heat 
transfer rate. 

The efficiency or COP curves η of the respective components 
are given in Table B.5 . Note that the given curves are used for both 
the quasi-stationary and the dynamic models. Apart from this, all 
efficiency and COP curves are assumed to be temperature indepen- 
dent, which is reasonable for boilers and CHPs but not necessarily 
for chillers and heat pumps ( Augenstein et al., 2005 ). 

B4. Generation components 

In the context of this article, the output of generation compo- 
nents is limited by their capacity and the availability of renewable 
energy resources, namely solar irradiation and wind. However, the 
maximum available power may not be exploited, e.g., if this would 
impair grid stability or exceed storage capabilities. 

B4.1. Photovoltaic units 

The electrical power P i provided by a photovoltaic (PV) unit i ∈ 

PV is limited by the solar irradiance I , the total area A i of the unit 
and its efficiency ηi via 

P i ≤ A i · ηi · I, i ∈ PV . 

Thereby, I accounts for direct, diffuse, and reflected solar irradi- 
ance onto the tilted PV unit’s area. 

Furthermore, the PV unit cannot exceed its nominal capacity 

P i ≤ A i · P 
nom 
i , i ∈ PV , 

where the nominal capacity depends on the area of the unit as 
well ( Ren et al., 2009 ). 

The average and maximum efficiency of current German PV 

technologies are 17% and larger than 20%, respectively, while the 
average performance ratio ranges from 80 to 90% ( Wirth and 
Schneider, 2019 ). Thus, we choose efficiency ηi = 0 . 19 and nomi- 

nal capacity P nom 
i 

= 0 . 171 kWm 
−2 

· A i as an example. 
For the case studies, the PV components are virtually installed 

on the roofs of the buildings described in B.2 with the parame- 
ters given in Table B.2 . To avoid self-shading effects of the pan- 
els, it is assumed that the rows have a minimum distance of 
three times the (projected) height of the units. Thus, for an in- 
clination of 30 ◦ the maximum available PV surface area is 42% 
of the total roof area, provided that the complete width of the 
roof can be used to install the panels. Applying that rule to 
the two experimental facility buildings, we have A 

max 
EF ≈ 205 m 2 . 

The PV area for the office buildings is up to 85% of the total 
roof surface, i.e. A 

max 
OB ∪ OBM ≈ 5261 m 2 , since the inclination is only 

10 ◦. The irradiance I is calculated as described in Section B.2.1 . 
The data is included in WeatherAndDemandTimeSeries.csv avail- 
able at https://git.es2050.org/heci/energy-benchmark in directory 
“App_Weather_And_Demand”. 

B4.2. Wind turbine 

The maximum power output of a wind turbine is determined 
by the wind velocity, which corresponds to the part-load behav- 
ior of the wind turbine, and its nominal capacity. We introduce 
efficiency ηel 

WT (λi ) for the mapping of wind velocity to the power 
output for each wind turbine i ∈ WT and, thus, obtain 

P out i ≤ ηel 
i (λi ) · P 

nom 
i ∀ i ∈ W T . 

As an example, the efficiency 

ηel 
i (λi ) = 

{ 
0 ∀ λi ≤ 0 . 33 
1 . 5393 · λi − 0 . 5091 ∀ 0 . 33 ≤ λi ≤ 1 . 00 
1 ∀ λi ≥ 1 . 00 

(B.6) 

given by ENERCON (2015) may be used. Thereby, load fraction λi is 
the wind velocity at each time step, normalized by the rated wind 
velocity, e.g. 15 m/s. 

B5. Storage components 

B5.1. TES 

In this article, we only take into account a lumped model of a 
hot/cold water storage tank for the thermal energy storage (TES). 
More sophisticated multi-layer tank models are discussed in, e.g., 
Steen et al. (2015) ; Schütz et al. (2015) . 

The energy balance based on heat transfer rates of such a sim- 
ple TES model yields 

dE i 
dt 

= ηin 
i Q 

in 
i −

1 

ηout 
i 

Q 
out 
i −

1 

τ loss 
i 

E i ∀ i ∈ T ES 

E i (0) = E i, 0 ∀ i ∈ T ES . (B.7) 
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with added and withdrawn heat transfer rates Q in 
i and Q out 

i 
, re- 

spectively, efficiencies ηin 
i and ηout 

i 
as well as self-discharge in de- 

pendence of the currently stored energy E i with time constant 
τ loss 
i 

. As an example, constant values τ loss 
i 

= 200 h for the time 

constant of the heat loss and ηin 
i = 

1 
ηout 
i 

= 0 . 95 for the efficiencies 

may be chosen. If input and output efficiencies coincide 

ηi := ηin 
i = 

1 

ηout 
i 

, 

as in our example, input and output heat transfer rate can be ag- 
gregated, e.g., by Q i := Q in 

i − Q out 
i 

. Thus, Eq. B.7 can be reformu- 
lated as 

dE i 
dt 

= ηi Q i −
1 

τ loss 
i 

E i ∀ i ∈ T ES (B.8) 

With reformulation Eq. (B.8) the number of degrees of free- 
dom is reduced, since only the total heat transfer rate flowing 
through the thermal energy storage is considered. Note that the 
dynamics in Eq. (B.7) are commonly discretized using the implicit 
( Schütz et al., 2017 ) or explicit Euler scheme ( Bahl et al., 2018b ). 
However, in benchmark case study “Operational optimization” we 
stick to formulation Eq. (B.8) , since a more sophisticated integra- 
tion scheme is incorporated in the dynamic optimization frame- 
work used. Aside from that, binary variables can be introduced to 
prevent simultaneous charging and discharging, cf. battery model 
in Section B.5.2 . The storage tank’s capacity E nom 

i serves as an up- 
per bound for the TES and presents a design variable determining 
its capacity 

0 ≤ E i ≤ E nom 
i ∀ i ∈ T ES . (B.9) 

In the design optimization, capacity E nom 
i is limited by 

E min 
i ≤ E nom 

i ≤ E max 
i ∀ i ∈ T ES . (B.10) 

Moreover, the heat transfer rates for charging and discharging 
the TES are limited by 

0 ≤ Q 
in 
i ≤

1 

τ in 
E nom 
i ∀ i ∈ T ES (B.11) 

0 ≤ Q 
out 
i ≤

1 

τout 
E nom 
i ∀ i ∈ T ES (B.12) 

with rates 1/ τ in and 1/ τout limiting the charging and discharg- 
ing process, respectively. Appropriate values are given by 1 / τ in = 

1 / τout = 1 h −1 , cf. ( Bahl et al., 2018b ). 

B5.2. Battery 

A generic model of an electrical battery is given by replacing 
the heat transfer rates in Eq. (B.7) by the electrical power applied 
to the battery. However, self-discharge is often negligible for (Li- 
Ion) batteries ( Zimmerman, 2004 ). This yields for any battery i ∈ 

BAT 

dE i 
dt 

= ηin 
i P 

in 
i + 

1 

ηout 
i 

P out i ∀ i ∈ BAT 

E i (0) = E i, 0 ∀ i ∈ BAT . (B.13) 

As an example, we choose values ηin 
i = 0 . 920 ≈ ηout 

i 
= 0 . 926 

based on Baumgärtner et al. (2019) and the round-trip efficiency 
reported in Tesla (2019) . 

Constraints Eqs. (B.9) to (B.12) apply analogously to the bat- 
tery model if heat transfer rate Q is swapped with power P where 
applicable. In contrast to a TES, the charging and discharging 
process of batteries is typically not limited by rate constraints. 
Baumgärtner et al. (2019) report time constants τ in = τout = 4 . 2 ·
10 −5 h , which lead to large upper bounds in Eqs. (B.11) and (B.12) . 
Note that the constraints implied by underlying power electronics 
are usually considerably tighter. 

Similar to the case of TES models, cf. Section B.5.1 , it is quite 
common to consider the discrete-time counter part of Eq. (B.13) in 
scheduling of power systems. To this end, the ODE can be dis- 
cretized by the forward Euler method considering averaged val- 
ues of P in ( t ) and P out ( t ) and a constant step width of e.g. 15min. 
We remark that the given model does not account for specifics of 
all existing battery technologies. For example, detailed models for 
RedOx-Flow ( Blanc and Rufer, 2008 ) and other battery types are 
beyond the scope of this work. 

In contrast to TES models, a battery cannot be charged and dis- 
charged at the same time. Put differently, the battery cannot ac- 
tively dissipate energy. Hence, the constraint 

P in i · P out i = 0 , ∀ i ∈ BAT 

is added. As this constraint leads to feasible sets with non- 
differentiable boundaries, it has been suggested to either neglect 
it ( Braun et al., 2018 ), or to relax it as follows 

P in i · P out i = ε > 0 , ∀ i ∈ BAT , 

see e.g. Appino et al. (2018) for details. 
Alternatively, one may model the asymmetric charging and 

discharging efficiencies by means of integer decision variables. 
Murray et al. (2018) proposed a mixed-integer formulation based 
on 

1 − ηin 
i = 

1 

ηout 
i 

− 1 = ηi ∀ i ∈ BAT , (B.14) 

which is a common assumption for batteries in the literature in 
place of ηin 

i = ηout 
i 

. Substitution of (B.14) into (B.13) gives 

dE i 
dt 

= (1 − ηi ) P 
in 
i + (1 + ηi ) P 

out 
i ∀ i ∈ BAT . 

The integer variable z i ∈ {−1 , 1 } allows to discriminate charging 
and discharging. Together with aggregating input and output, the 
following mixed-integer formulation 

dE i 
dt 

= (1 + z i ηi ) P i , ∀ z i ∈ {−1 , 1 } , i ∈ BAT 

is obtained. 

B6. Grid models 

We consider thermal, electricity, and gas grids as components 
and use simple models. In particular, gas is only a potential energy 
resource and the gas grid is approximated as a point source with 
a known gas price. 

B6.1. Thermal grid 

We do not consider an external thermal grid. Thus, cooling and 
heating supply have to match the aggregation of building demands 
and storage capacities. 

According to Mehleri et al. (2012) , an energy balance is formu- 
lated for each node j of the thermal grid, comprising generation, 
consumption, storage, and interaction with neighboring nodes l . 
For a given energy supply system, this results in 

∑ 

i ∈ BOI ∪ CHP ∪ T ES heat 

Q 
heat , out 
i, j 

+ 

∑ 

l 

(

γheat 
l→ j · Q 

heat 
l→ j − Q 

heat 
j→ l 

)

= Q 
heat , dem 
j 

+ 

∑ 

k ∈ AC ∪ T ES heat 

Q 
heat , in 
k, j 

for each node j of the heating grid and 
∑ 

i ∈ AC ∪ CC ∪ T ES cool 

Q 
cool , out 
i, j 

+ 

∑ 

l 

(

γcool 
l→ j · Q 

cool 
l→ j − Q 

cool 
j→ l 

)

= Q 
cool , dem 
j 

+ 

∑ 

k ∈ T ES cool 

Q 
cool , in 
k, j 
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for each node j of the cooling grid, where parameter γ is a loss 
factor. Mehleri et al. (2012) and Obara (2007) further approximate 
the loss factor γ proportional to the distance to the neighboring 
node l . 

B6.2. Electricity grid 

A simplified model of a balanced electrical AC (alternating cur- 
rent) grid can be given by a lumped-parameter system at steady- 
state, which can be described by the triple (N , G, Y ) , where N = 

{ 1 , . . . , N} is the set of buses (nodes), G ⊆ N is the non-empty set 
of generators, and Y = G + j B ∈ C N×N is the bus admittance matrix 
( Grainger and Stevenson, 1994 ). The off-diagonal entries of Y can 
be written as y li = g li + j b li , whereby g li is the conductance for the 
line li , respectively, b li is the line susceptance. The diagonal entries 
of Y are y ll = y l + 

∑ 

l 
 = m y li , where y l accounts for linear load con- 
nected to bus l . 

For the sake of simplicity, we assume that there is only one 
generator per bus (i.e. G ⊆ N ). Thus, at each bus i ∈ N we have 

P i = P dem 
i + P gen 

i 
, 

where by convention P gen 
i 

= 0 if i 
∈ G. The parameter P dem 
i 

models 
the demand of electrical power at node i , it also captures uncon- 
trollable renewable generation, e.g., the maximum power output of 
PV components. Batteries are considered to be generators. 

To reduce nonconvexities, lossless lines, small phase differences, 
and constant voltage magnitudes are commonly assumed. With 
these assumptions, the overall active power balance for the grid 
reads 
∑ 

i ∈N 

P i = 0 . (B.15) 

Note that power balance Eq. (B.15) is used in the given bench- 
mark case studies. 

A simple expression for the phase angles θ i at each bus is given 
by 

P = −
∑ 

i ∈N\{ l} 

b li (θl − θi ) ⇐⇒ P = −B θ , (B.16) 

where B is the imaginary part of the bus admittance matrix Y, P is 
the vector of electrical powers, and θ is the vector of phase angles. 
The above Eqs. (B.16) are the so-called DC (direct current) power 
flow equations ( Grainger and Stevenson, 1994 ). 

Appendix C. Linearization scheme 

C1. Linearization of efficiency/COP curves 

In this article, we assume that efficiency or COP ηi is a given, 
possibly nonlinear function in dependence of load fraction λi := 

Q out 
i 

/ Q 
nom 
i , see Table B.5 . According to Voll et al. (2013) , it is favor- 

able to linearize the functional dependency of input heat transfer 
rate Q in 

i on output heat transfer rate Q out 
i 

Q 
in 
i = 

Q out 
i 

ηi (λi ) 
= 

λi 

ηi (λi ) 
· Q 

nom 
i (C.1) 

Table C.1 

Supporting points of part-load behavior 

Components λ
in 
i, 1 λ

out 
i, 1 λ

in 
i, 2 λ

out 
i, 2 λ

in 
i, 3 λ

out 
i, 3 

BOI 0.2 0.22608 1 1 – –
CHP 1 / 2 / 3 (th) 0.5 0.46035 1 1 – –
CHP 1 / 2 / 3 (el) 0.1 0.20251 1 1 – –
AC 0.2 0.25006 0.60778 0.48792 1 1 
CC 0.2 0.31204 0.70497 0.59543 1 1 
HP 0.2 0.21584 1 1 – –

Fig. C.1. Piecewise linearization of part-load behavior of component i ∈ U adapted 
from Majewski et al. (2017) 

rather than linearizing the nonlinear functions ηi for the consid- 
ered components i ∈ U . Note that we linearize based on normal- 
ized variables λi and λ

in 
i := Q in 

i · ηnom / Q 
nom 
i . 

We apply a piecewise linearization as depicted in Fig. C.1 . 

In fact, the feasible interval of variable λi ∈ [ λmin 
i , 1] is de- 

composed into 
∣

∣J λ
∣

∣ = n λ intervals with supporting points λmin 
i = 

λout 
i, 0 < . . . < λout 

i,n λ−1 < λout 
i,n λ = 1 , j = 

{

0 , . . . , n λ
}

for any component 
i ∈ U . For each time step t ∈ T , the independent variable l i,j in in- 

terval j ∈ J λ is switched on or off by a binary b λ
i, j ∈ { 0 , 1 } 

λ
out 
i, j · b λi, j ≤ l i, j ≤ λ

out 
i, j+1 · b 

λ
i, j ∀ j ∈ J 

λ\ 
{

n λ
}

, ∀ i ∈ U . 

In this way, at most one interval can be active 
∑ 

j∈J λ

b λi, j ≤ 1 ∀ i ∈ U 

and the resulting load fraction λi is obtained by 

λi = 

∑ 

j∈J λ

l i, j ∀ i ∈ U . 

Based on supporting points 
(

λin 
i, j , λ

out 
i, j 

)

, the slope parameter 

β
λ
i, j of the line segments j is given by 

β
λ
i, j = 

λ
in 
i, j+1 − λ

in 
i, j 

λ
out 
i, j+1 − λ

out 
i, j 

∀ j ∈ J 
λ, ∀ i ∈ U . 

This yields the piecewise linear formulation 

λin 
i = 

∑ 

j∈J λ

b λi, j · λ
in 
i, j + β

λ
i, j ·

(

l i, j − λ
out 
i, j · b λi, j 

)

∀ i ∈ U . (C.2) 

Note that load fraction l i,j equals 0 if the binaries b 
λ
i, j of all in- 

tervals ∀ j ∈ J λ are 0. Example values for the linearization of the 
functions given in Table B.5 is given in Table C.1 . 

Inserting the definition of the load fraction λin 
i into 

Eq. (C.2) with l i, j = Q out 
i, j 

/ Q 
nom 
i gives 

Q 
in 
i = 

∑ 

j∈J λ

λ
in 
i, j ·

b λ
i, j · Q 

nom 
i 

ηnom 
+ 

β
λ
i, j 

ηnom 
·
(

Q 
out 
i, j − λ

out 
i, j · b λi, j · Q 

nom 
i 

)

∀ i ∈ U (C.3) 

and 

λ
out 
i, j · b λi, j · Q 

nom 
i ≤ Q 

out 
i, j ≤ λ

out 
i, j+1 · b 

λ
i, j · Q 

nom 
i 

∀ j ∈ J 
λ\ 

{

n λ
}

, ∀ i ∈ U . (C.4) 
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Table C.2 

Supporting points of investment costs 

Comp. Q lb i, 1 CAPEX lb i, 1 Q lb i, 2 CAPEX lb i, 2 Q lb i, 3 CAPEX lb i, 3 Q lb i, 4 CAPEX lb i, 4 
[kW] [ e ] [kW] [ e ] [kW] [ e ] [kW] [ e ] 

BOI 100 27680.7 2000 86955 – – – –
CHP 1 100 138090 1400 436869 – – – –
CHP 2 1400 436869 2300 643716 – – – –
CHP 3 2300 643716 3200 850563 – – – –
AC 100 71404 711 155917.5 2000 243252 – –
CC 400 89006 10000 1572302 – – – –
PV 5 32858.3 55 295651.5 550 2187492 – –
HP 5 5113.7 27 14999.4 83 31260.1 200 55486 
BAT 0 0 40 47323 120 118368 2000 1238006 
T ES cool 0 0 20 14492 1000 35264 25000 543968 
T ES heat 0 0 20 1929 23175 502079 115000 2086885 

Due to product b λ
i, j · Q 

nom 
i , Eqs. (C.3) and (C.4) give a piecewise 

linearization of function Eq. (C.1) only if the nominal capacity Q 
nom 
i 

is fixed. Otherwise, e.g., for design optimization, this bilinear prod- 
uct of a binary variable b λ

i, j and a continuous variable Q 
nom 
i can 

be linearized with the help of Glover’s linearization ( Glover, 1975 ). 
Thus, we substitute the bilinear product in Eqs. (C.3) and (C.4) with 
a new time-dependent variable d i,j and obtain 

Q 
in 
i = 

∑ 

j∈J λ

λ
in 
i, j ·

d i, j 

ηnom 
+ 

β
λ
i, j 

ηnom 
·
(

Q 
out 
i, j − λ

out 
i, j · d i, j 

)

∀ i ∈ U , 

λ
out 
i, j · d i, j ≤ Q 

out 
i, j ≤ λ

out 
i, j+1 · d i, j 

∀ j ∈ J 
λ, ∀ i ∈ U . 

Moreover, bounds 

Q 
min 
i ≤ Q 

nom 
i ≤ Q 

max 
i 

are replaced by 

b λi, j · Q 
min 
i ≤ d i, j ≤ b λi, j · Q 

max 
i (C.5) 

(

1 − b λi, j 
)

· Q 
min 
i ≤ Q 

nom 
i − d i, j ≤

(

1 − b λi, j 
)

· Q 
max 
i . (C.6) 

On the one hand, Eq. (C.5) guarantees that the new variable d i,j 
is 0 if the corresponding binary b λ

i, j equals 0. On the other hand, 

variable d i,j equals capacity Q 
nom 
i if binary b λ

i, j equals 1 due to 

Eq. (C.6) . 

C2. Linearization of investment costs 

Analogously to C.1 , we can replace the nonlinear investment 
costs 

CAPEX i 

(

Q 
nom 
i 

)

= CAPEX 
0 
i ·

(

Q 
nom 
i 

Q 
0 
i 

)γ6 ,i 

with 

CAPEX i 

(

Q 
nom 
i 

)

= 

∑ 

j∈J 

b i, j · CAPEX 
lb 
i, j + β

Q 
i, j ·

(

Q 
nom 
i, j − Q 

lb 
i, j · b i, j 

)

β
Q 
i, j = 

CAPEX 
lb 
i, j+1 − CAPEX 

lb 
i, j 

Q 
lb 
i, j+1 − Q 

lb 
i, j 

∀ j ∈ J 
Q 

Q 
nom 
i = 

∑ 

j∈J 

Q 
nom 
i, j 

Q 
lb 
i, j · b 

Q 
i, j 

≤ Q 
nom 
i, j ≤ Q 

lb 
i, j+1 · b 

Q 
i, j 

∀ j ∈ J 
Q \{ n Q } 

∑ 

j∈J Q 

b Q 
i, j 

≤ 1 

b Q 
i, j 

∈ { 0 , 1 } ∀ j ∈ J 
Q , 

where the feasible interval of variable Q 
nom 
i ∈ 

[

Q 
min 
i , Q 

max 
i 

]

is de- 

composed into 
∣

∣J Q 
∣

∣ = n Q intervals with bounds Q 
min 
i = Q 

lb 
i, 0 < 

. . . < Q 
lb 
i,n −1 < Q 

lb 
i,n Q 

= Q 
max 
i , j ∈ J Q for any unit i ∈ U . Example val- 

ues of the supporting points 
(

CAPEX 
lb 
i, j , Q 

lb 
i, j 

)

for the considered 

components are given in Table C.2 . 
Note that the nonlinear function CAPEX i only depends on the 

independent variable Q 
nom 
i apart from constant parameter values 

and, thus, is either constant (operational optimization) or univari- 
ate (design optimization). In contrast to C.1 , the application of 
Glover’s linearization is therefore not necessary for the lineariza- 
tion of the investment costs CAPEX i . 

Appendix D. Smoothing of efficiency regarding minimum load 

fraction 

In this section, we include the minimum load fraction into the 
dynamic model equations of boiler and CHP, see Section B.3 , to 
show the expandability of the presented model equations. More 
precisely, the hyperbolic tangent is used as a smooth switching 
function between turned off mode and an operation with a load 
fraction larger than the minimum load fraction. Thus, no binary 
controls are introduced and, in particular, we can avoid adding a 
combinatorial complexity to a dynamic model. 

As a complication, the turned off mode with load fraction λi = 

0 poses a stable point of the dynamics in Eq. (B.5) . In fact, point 

( 
d λi 
dt , λi ) = (0 , 0) cannot be escaped independent of the chosen 

control value Q in 
i 

Fig. D.1. Relative efficiency with minimum load fraction λmin 
i , i ∈ BOI ∪ CHP as given in Table B.5 
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d λi 

dt 
| λi =0 = 

1 

τ i 
·

(

ηheat / cool 
i 

(λi ) | λi =0 ·
Q in 
i 

Q 
nom 
i 

− 0 

)

= 
1 

τ i 
·

(

0 ·
Q in 
i 

Q 
nom 
i 

− 0 

)

= 0 ∀ i ∈ C . 

without a binary control turning the boiler or CHP explicitly on. 
Therefore, the zero-operation below the minimum load fraction is 
replaced by a linear operation with sufficient slope, see Fig. D.1 . As 
the result, original efficiency ηheat 

i 
(λi ) , i ∈ BOI ∪ CHP is replaced 

by the adapted smooth efficiency 
(

0 . 5 + 0 . 5 · tanh 
(

γ1 · (λi − λ
min 
i ) 

)

)

· ηheat 
i (λi ) 

+ 

(

0 . 5 − 0 . 5 · tanh 
(

γ1 · (λi − λ
min 
i ) 

)

)

· ( γ2 + γ3 · λi ) , 

in Eq. (B.5) . As an example, parameter values γ1 = 30 , γ3 = 1 . 2 , 
and γ2 = 0 . 0 0 01 are chosen. 
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