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tralization of energy generation necessitate the development of efficient strategies for design22

and operation of sector-coupled energy systems. Today, design and operation of process23

and energy systems rely on powerful numerical methods, in particular, optimization meth-24

ods. The development of such methods benefits from reproducible benchmarks including25

transparent model equations and complete input data sets. However, to the authors’ best26

knowledge and with respect to design and optimal control of sector-coupled energy systems,27

there is a lack of available benchmarks. Hence, this article provides a model compendium,28

exemplary realistic data sets, as well as two case studies (i.e., optimization benchmarks)29

for an industrial/research campus in an open-source description. The compendium includes30

stationary, quasi-stationary, and dynamic models for typical components as well as lineariza-31

tion schemes relevant for optimization of design, operation, and control of sector-coupled32

energy systems.33
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1 Introduction36

Realistic mathematical models of sector-coupled energy systems are a key for developing37

tailored numerical optimization methods, which in turn are essential for manifold research38

efforts towards a successful decarbonization, defossilization, and decentralization of energy39

supply. Numerical optimization allows to optimally plan, design, operate, and control energy40

systems while accounting for the inherent volatility of renewables as well as for environmen-41

tal, economic, and social aspects, see [2, 68].42

In process systems engineering, numerical optimization is in many cases the method of43

choice for control and automation problems [28, 29, 55]. Moreover, its importance for design44

optimization [34] and operation of energy systems is steadily increasing. The respective45

research efforts regarding the dynamic optimization of energy systems comprise a variety of46

methods and applications, spanning from the development of accurate and fast simulation47

methods for the control of thermal energy storage [8] via the incorporation of real-world48

weather forecasts [22] to nonlinear model-predictive control and/or real-time optimization of49

power grids with storage [1, 16, 31, 63], and the optimization of HVAC (Heating, Ventilation,50

and Air Conditioning) systems for buildings [18, 45, 75, 93, 102].51

Design of energy systems is typically cast as Mixed-integer Nonlinear Programs (MINLPs),52

e.g., in [59], or Mixed-integer Linear Programs (MILPs), e.g., in [58, 62, 101]. Besides, dy-53

namic optimization problems comprising operational optimization and optimal control are54

typically solved by direct methods based on discretization, yielding MINLPs, NLPs (Non-55

linear Programs), or MILPs, see [14, 42]. Optimization problems arising in context of56

sector-coupled energy systems are challenging for a number of reasons: multiple time scales,57

large number of equations, uncertainties, potentially conflicting multiple objectives, or the58

hard-to-quantify effect of underlying modeling assumptions. Hence, there are widespread59

and ongoing research efforts on modeling and numerical optimization for such systems, see,60

e.g., [7, 32, 61, 69, 80].61

The development of any numerical method benefits from well-defined, transparent, and62

realistic benchmark problems. In numerical optimization, benchmark libraries are therefore63

widely established, including MINLPLib [19], PrincetonLib [95], COCONUT benchmark64

[87], MINTOC benchmark [81], and MIPLIB [56]. Benchmark problems are also common65

in Process Systems Engineering such as the Williams-Otto reactor [99], which, up to this66

day, is frequently used to compare methods for real-time optimization of process systems67

[90]. Another well-known benchmark problem is the Tennessee Eastman process proposed68

by [24]. It is still in use for a wide range of research purposes, e.g., for demonstrating the69

efficiency of a newly developed plant-wide control scheme [60]. Recently, similar efforts have70
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been made for energy systems. This includes71

• software frameworks for modeling and optimization of sector-coupled energy supply72

systems available online, compare for example [4, 79, 84], and the Temoa framework73

with the widely accepted linear and quasi-stationary benchmark model Utopia [50, 51],74

• a lately increasing number of open source data-bases providing country-scale data like75

the Open Energy Modeling Initiative [72] or specifications of complete power plants76

like the JRC Open Power Plants Database [47];77

• benchmarks for specific energy systems like electricity grids [53, 49, 94] or energy78

supply systems for supermarkets as used, e.g., in [13]; and79

• specifically focused model collections, e.g., for ship energy systems [82] or for economic80

design of combined cooling, heating, and power (CCHP) systems [77].81

However, there are also certain shortcomings and gaps in the benchmarks available in the82

literature.83

• The existing software frameworks usually lack transparency. Typically, there is no84

easily accessible documentation of model equations and corresponding example data.85

• Existing data-sets do not account for the scale of an industrial/research campus or86

specifications of individual components like boilers.87

• Specific benchmarks and model collections lack flexibility. If the focus is on a partic-88

ular sector-coupled energy system, different objectives, or the combination of quasi-89

stationary and dynamic operation of different components, the adaptation of the pro-90

posed setting is usually time consuming or even effectively impossible due to a lack of91

documentation.92

To the best of the authors’ knowledge, there is currently no widely accepted benchmark93

for the optimization of design, operation, and control of energy systems supplying indus-94

trial/research campuses. Moreover, models and especially input data for such energy systems95

are scattered over numerous publications, specification sheets, websites, etc. and are often96

subject to data protection regulations.97

Thus, we compile a model compendium for typical components of an energy supply98

system coupling cooling, heating, and electricity for industrial/research campuses. The99

considered setting is inspired by the real-world supply systems of the Campus North of100

the Karlsruhe Institute of Technology and the Forschungszentrum Jülich.1 We provide101

1This article is a contribution to the open source and benchmark project HECI – Helmholtz Energy

Computing Initiative [46].
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a complete data set for weather, energy prices, cooling, heating, and electricity demands102

as well as parameter values for the system components. On the demand side, we include103

building models validated with real-world measurements. The application setting considered104

is the optimal design and operation of industrial/research campuses. In principle the scope105

of the models could be extended to include industrial processes and large-scale networks;106

however, this is outside the scope of the manuscript. Finally, we propose two optimization107

case studies as open-source benchmark problems: (1) a bi-objective design optimization of108

a generic energy system and (2) the operational optimization of a dynamic model for a109

sector-coupled energy system with fixed design.110

We address requirements of different application contexts, namely the optimization of111

design, operation, and control of energy systems. Hence, we include stationary, quasi-112

stationary, and dynamic model equations of the most frequently considered components.113

We do not attempt an extensive review on modeling strategies or data ranges. Rather we114

present one common model formulation for each component. These models are based on115

already available publications and specification sheets. In fact, the components are modeled116

based on energy flow rates, which have to satisfy energy balance equations and input-output-117

relations given by efficiency or COP (coefficient of performance) curves, i.e., they are first-118

principles models. For the sake of self-containment, we recall a linearization scheme [97]119

and an approach for considering a minimum load fraction within the purely continuous and120

smooth dynamic optimization model of our second benchmark case study based on standard121

techniques. To foster accessibility of the compendium, we propose a consistent notation.122

The remainder of this article is structured as follows: In Section 2, we present the virtual123

campus including all components of an energy supply system, which are considered in this124

article. Based on this generic energy system, we emphasize how the consistent notation125

and modeling of our corresponding model compendium allows for identifying synergies and126

structural differences of the various fields of applications. Section 3 contains description127

and results of the two benchmark case studies. Finally, conclusions are drawn in Section 4.128

The Appendix starts with the introduction of the notation in A. Afterwards, the model129

compendium including example parameter values forms B. In C and D, the linearization130

scheme and a smooth extension of the dynamic equations regarding a minimum load fraction,131

respectively, are given. The git repository available at https://git.es2050.org/heci/132

energy-benchmark contains input and output data as well as the models and optimization133

formulations in GAMS [66], Modelica [64], Pyomo http://www.pyomo.org/, and Matlab.134
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Figure 1: Generic energy system with a free number of component units for the supply of a
virtual real-world campus of office buildings and experimental facilities

2 Generic energy system for a campus135

Figure 1 shows the generic structure of a sector-coupled energy supply system for a campus136

of variable size considered in this article. The eventual choice of components, number of137

respective units as well as coupling points between the gas, electricity, heating, and cooling138

grid is subject to the specifically chosen application. Both economic and environmental139

criteria can be chosen for evaluating design and operation of the generic energy system.140

To cover the specific needs of the optimization of design, operation, and control of en-141

ergy supply systems, consistent quasi-stationary and dynamic models as well as linear and142

nonlinear models are provided. The quasi-stationary models can be obtained by setting all143

temporal derivatives to zero in the dynamic models. Similarly, the linear models converge to144

the nonlinear models in the limit of zero distance between two adjacent supporting points.145
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As a result, the gathered component models form a unified framework, which allows to in-146

vestigate the impact of linearizations and the assumption of quasi-stationary behavior for147

the optimization of energy supply systems without distortions caused by different modeling148

premises. Note that we present only models based on energy flow rates. Moreover, we pro-149

vide dynamic extensions for models with thermal inertia on a scale of minutes. In contrast,150

models referring to electricity are assumed to be (quasi-)stationary, since the dynamics of151

electrical processes is usually on a scale of seconds.152

The model compendium aims to emphasize synergies and structural differences between153

optimization applications in energy supply systems. For instance, the incorporation of bat-154

tery models intrinsically introduces nonsmoothness/nonconvexity in any optimization prob-155

lem, cf. discussion in B.5.2. Moreover, some degrees of freedom of a model depend on156

the type of component rather than the field of optimization: the input power/heat trans-157

fer rate is strictly determined by the output for conversion components, only bounded by158

the technical possible output for generation components and loosely coupled to the output159

via storage level and capacity for storage components. However, other degrees of freedom160

depend on the field of application and increase the complexity of the optimization problem161

significantly, even if the same model equations are used. E.g., the linearization scheme of162

the efficiency or COP in C.1 is sufficient for operational optimization problems with a-priori163

known capacities, while it needs to be combined with Glover’s reformulation [39] in design164

optimization problems where capacities are degrees of freedom. Besides, the choice between165

algebraic and dynamic optimization can influence the mathematical properties of the same166

physical variable. As an example, the roles of input and output heat transfer rate of a167

boiler are interchangeable for the optimizer within a quasi-stationary, algebraic problem,168

see Equation (4a), while their hierarchy is fixed in the dynamic model, see Equation (5).169

3 Optimization benchmarks170

As a proof-of-concept as well as to show the wide range of applications of the provided171

model compendium, we propose two case studies as optimization benchmarks: (1) a bi-172

objective design optimization accounting for economic and environmental criteria based173

on all components of the generic energy system depicted in Figure 1, and (2) a dynamic174

operational optimization of a sector-coupled energy supply system with fixed, optimal design.175

Both case studies consider the demand of six office buildings of type “OB”, two smaller office176

buildings of type “OBM”, and two experimental facilities “EF”, each with one thermal zone,177

see B.2.2 for details. More specifically, B.2.1 describes the parameter identification of the178
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Figure 2: Comparison of simulation and measurements for the original office building “OB
1”

thermal models for the office building “OB 1” as well as the experimental facility “EF 1”179

based on measured temperature data. Figures 2 and 3 show an excerpt of the simulated180

temperature and heating/cooling input Qdem
z compared to the real measurement data for181

buildings “OB 1” and “EF 1”. The Coefficients of Variation of Root Mean Square Error182

CV(RMSE) (acc. to [21]) of the indoor temperature are 1.2% for “EF1” (for hourly data183

between 13 Jan and 11 Sep 2018) and 0.3% for “OB1” (for hourly data between 1 Jun and184

31 Dec 2018).185

Example values for general parameters and inputs as well as all model equations can be186

found in B. Parameter values which differ for the two case studies are given in the following.187

This includes, e.g., bounds on capacities which are required for the design optimization and188

fixed to the nominal value for the optimization of the operation.189

We scale the values of system variables within the optimization models to a range of190

approximately 0 to 1 to avoid numerical problems.191

3.1 Design optimization192

Design optimization has to cope with large-scale optimization problems, in particular, due193

to the incorporation of combinatorial decisions and operational optimization [35]. [40]194

have even shown that the design problem of (distributed) energy supply systems is NP-195

hard. In this case study, we regard both minimum costs and minimum global warm-196

ing impact, which further increases the complexity of the design optimization problem.197

Thus, the models are linearized as described in C, allowing for continuous sizing of all198
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Figure 3: Comparison of simulation and measurements for the original experimental facility
“EF 1”

Table 1: Component specifications

Comp. Min. capacity Max. capacity Min. load fraction maintenance factor
Qmin

i [kW] Qmax
i [kW] λout

i,1 [−] γ4,i [a−1]

BOI 100 2000 0.2 0.015
CHP1 100 1400 0.5 0.1
CHP2 1400 2300 0.5 0.1
CHP3 2300 3200 0.5 0.1
AC 100 2000 0.2 0.1
CC 400 10000 0.2 0.04
PV 5 550 0.0 0.01
HP 5 200 0.2 0.01

components. Additionally, the time-varying input parameters are aggregated using the k-199

medoids method proposed by [6]. Thereby, we employ 4 typical periods and 4 segments200

per typical period with additional peak values for demands. The resulting sorted aggre-201

gated time-varying demands and prices are shown in Figure 4 and are available at https:202

//git.es2050.org/heci/energy-benchmark in directory “3 1 Design Optimization” in file203

“AggregatedTimeSeries.csv”. Despite the clear deviations between the aggregated and the204

original full time-series, aggregating time-series have been shown to lead to near-optimal205

solutions in studies [5, 10].206

All components of the generic energy system depicted in Figure 1 are considered for207

Table 2: Storage component specifications
Comp. Min. capacity Max. capacity maintenance factor

Emin
i [kWh] Emax

i [kWh] γ4,i [a−1]

BAT 0 2000 0.025

T EScool 0 25000 0.01

T ESheat 0 115000 0.01
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the supply of a campus comprising ten buildings. Only wind turbines are excluded as208

the installation is often prohibited due to construction limits as, e.g., minimal distances to209

neighboring residential buildings. The values of [96] are used for parameters regarding boilers210

BOI, combined heat and power engines CHP, absorption chillers AC, and compression211

chillers CC, while the parameter values of [11] are taken for the photovoltaic units PV ,212

heat pumps HP, batteries BAT , and thermal energy storage units T ES, see Tables 1 and213

2. Note that the corresponding references had demonstrated the linearization to be an214

adequate representation of the nonlinear models. Example values for linearized part-load215

behavior and linearized investment costs are given in Tables 11 and 12, respectively. Please216

note that cyclic conditions apply for the operation of the thermal storage units as well as217

the battery in each typical period. Further, charge and discharge of all storage units are218

suppressed in the time steps representing the additional peak demand values. We assume a219

constant global warming impact for the electricity mix of the grid gwiel = 561 gCO2-eq./kWh.220

As an alternative, a time dependent global warming impact based on [11] is provided for the221

considered time-series as well, see “AggregatedTimeSeries.csv” at https://git.es2050.222

org/heci/energy-benchmark in “3 1 Design Optimization”. When electricity is fed into223

the grid, we assume a credit for the global warming impact GWI (B.1.2) following the idea224

of the avoided burden [9]. Moreover, we employ gwifuel = 244 gCO2-eq./kWh for the specific225

global warming impact of purchased gas as well as time horizon τh = 4a and interest rate226

γ5 = 8% for the calculation of the present value factor PVF [61]. The interest rate in227

application cases strongly varies; other authors employ 5% for example [84].228

To solve the design optimization problem, we apply the automated super-structure-229

generation approach from [97]. This approach successively performs superstructure opti-230

mization until the objective function value does not further improve. In each optimization,231

the superstructure of the energy supply system is enlarged by one unit for each component232

type. Although we consider three sizes of combined heat and power engines CHP, see Ta-233

ble 1, we only allow one additional CHP unit rather than one for each size when increasing234

the superstructure by one unit. To decrease the computational effort, we aggregate the roof235

area of the office buildings and of the experimental facilities, respectively, and we allow at236

most one photovoltaic unit and one storage component for each building type. Note that237

the values for the linearized investment costs are not changed despite the aggregation, since238

there is no significant economy of scale for photovoltaic components.239

The design optimization approach is implemented in GAMS 24.7.3 [66]. We choose240

GAMS as it is one of the standard modeling environments. To solve the problem, CPLEX241

12.6.3.0 [52] is used employing an optimality gap of 0.5%. A GAMS file containing the242
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Figure 5: Designs of Pareto-efficient solutions based on possibly installed components shown
in Figure 1

problem statement after automated super-structure generation and using the single objec-243

tive of total annualized costs, namely “Model.lst”, can be found at https://git.es2050.244

org/heci/energy-benchmark245

in “3 1 Design Optimization”. Therein, we also provide a corresponding pyomo file gener-246

ated automatically via the GAMS convert function, along with the variable mapping. Pyomo247

has the advantage that it is open source.248

We perform a bi-criteria optimization, minimizing the total annualized costs TAC and249

the global warming impact GWI employing the augmented ε-constraint method [65]. The250

resulting trade-off in the Pareto front as well as the corresponding Pareto-efficient designs251

are shown in Figure 5.252

The global warming impact GWI decreases for designs with a tri-generation system253

in place of separately operating boilers BOI and compression chillers CC with additional254

purchase of electricity from the grid. Low-GWI energy systems employ a higher number255
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of CHP engines in combination with the installation of absorption chillers AC, which allows256

for simultaneous heating and cooling supply while providing electricity for on-site demands257

or the grid. As a result, the system is even able to reach a negative global warming impact258

GWI, as the avoided burden by feeding in electricity (B.1.2) is higher than the global259

warming impact induced by the consumption of fuel on-site.260

The increasing investment in a higher number of smaller conversion units and larger261

storage units enables a more ecological operation by utilizing highly-efficient operational262

points and load shifting, compare Figure 5(b). Moreover, larger photovoltaic units are263

installed for a more climate-friendly energy supply. The maximum PV area is reached at264

the third point on the Pareto front with decreasing global warming impact GWI.265

Herein, we do not consider the selection of a final design by the decision maker. This266

selection can be done with a wide range of decision supporting tools, see, e.g., [54]. For the267

synthesis of distributed energy supply systems and other two-stage optimization problems,268

for instance, the flex-hand approach automatically selects a highly flexible design in operation269

such that the final design performs well regarding all considered criteria [48].270

3.2 Operational optimization271

The second case study pertains to the offline optimal control of nominal operation based272

on realistic simulation data and parameter values as well as the dynamic models given in273

B with the extension discussed in D. The energy supply system considered is given by the274

cost-optimal solution of the design optimization problem discussed in Subsection 3.1. We275

particularly focus on the parallels between thermal energy storage (TES) and the thermal276

inertia in buildings.277

The feasibility of the design for an energy system with either explicit or implicit storage278

is guaranteed by excluding TES units in the design optimization. Instead, the size of the279

TES unit is adapted to heat transfer capacity Qmax = 100 kW of Building “OB 1”, cf.280

Table 8, by choosing nominal capacity Enom
i = 1h · Qmax = 100 kWh, cf. B.5.1. The281

optimal design comprises one boiler unit with nominal capacity Qnom
i = 530 kW, i ∈ BOI282

and minimum load fraction λmin
i = 0.2, i ∈ BOI, one CHP unit with nominal capacity283

Qnom
i = 470 kW, i ∈ CHP and minimum load fraction λmin

i = 0.5, i ∈ CHP, as well as PV284

units covering the maximum possible surface area of the solar panels on the buildings, cf.285

B.4.1. For the energy conversion components, time constants τ i = 0.1 h, i ∈ BOI ∪ CHP286

are chosen due to their fast response in reality.287

We use weather data of Stuttgart in the winter week November 26, 2018 to December288

02, 2018 [25] and the price data of a similar week during the year, namely time points 7896 h289
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- 8063 h taken from [6], see Figure 6.290

The controls are the heat transfer input of the boiler and the CHP unit, the power291

provided by the PV components clustered in one unit for all (modified) office buildings and292

one for both experimental facilities, as well as the purchased electricity at any considered293

time point. The initial values of the load fractions of boiler and CHP are optimized. The294

TES is set to be half-full at the beginning to allow for both charging and discharging. The295

heat transfer rate exchanged with the TES is the difference between the given demand and296

the heat transfer rate provided by the boiler and the CHP unit. We minimize the total costs297

subject to the model constraints reported in B. Note that violations of path constraints298

may occur between discretization points, compare [36]. Besides, we do not impose periodic299

boundary conditions to not further restrict the optimizer. Since weather is not week-periodic,300

periodic operation is not expected to be optimal. Other researchers, e.g., [37] have imposed301

periodic boundary conditions to avoid discharging the storage. Our model compendium302

enables variations of the benchmark to account for such boundary conditions. Note however303

that periodic boundary conditions and oscillating systems bring substantial challenges [98].304

For the dynamic optimization of the operation, the dynamic optimizer DyOS [20, 26]305

calling local nonlinear optimizer SNOPT [38] and integrator IDAS [86] is employed. We306

use feasibility tolerance of 0.01 and optimality tolerance of 0.001. We write the model in307

Modelica. The motivation is that it is open source and supported by a variety of commercial308

and open-source simulation and optimization tools, including our in-house solver DyOS. In309

nonconvex dynamic optimization problems, a good initial guess is typically required for310

convergence of the optimizer. While in principle deterministic global methods exist since311

more than a decade [88], these are far from being applicable to such systems. An alternative312

are heuristic local methods such as multistart, which has been applied to energy systems,313

e.g., [37]. However, a challenge is that many runs fail to converge. Herein, we find the initial314

point based on ad-hoc adaptations of intermediate optimization results. Flat Modelica files315

containing the dynamic optimization problem as well as the dynamic simulation model for316

building “OB 1” are given by “OptModel.mo” and “OB1SimModel.mo”, respectively, at317
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https://git.es2050.org/heci/energy-benchmark in directory “3 2 Optimal Control”.318

The CHP over-fulfills the electricity demand when the gas price is low and the gas319

demand is high compared to the electricity demand, cf. Figure 7(b). Thus, no purchase320

of electricity is required and only the volatility of the sale price of electricity can affect321

the optimal solution. In this way, the TES enables a higher CHP load in periods with322

higher sale prices for electricity. For instance Figure 7(a) shows the CHP extended full-load323

period within interval [18 h, 24 h] and the load fraction peak within interval [150 h, 168 h]. In324

contrast to that, the boiler is only used during the high demand periods of the workdays,325

i.e., from 0h to approximately 120 h. To satisfy the remaining heat demand, the boiler is326

run at about 30% to 40% load, see Figure 7(c). Note that the operation with this low327

load fraction is already highly efficient, cf. Figure 13. At the weekend, the bi-generation328

capabilities of the CHP are further exploited while the boiler drops instantaneously below329

its minimum load fraction and is therefore turned off.330

Finally, we transfer the capability of the TES as explicit storage to Building “OB 1” as331

implicit storage. In particular, the optimized heat transfer rate interchanged with the TES332

Qi, i ∈ T ES is added to heating demand Qheat,dem given in B.2.2 which has been used for333

the dynamic optimization. The internal temperature within Building “OB 1” is simulated334

based on heat demand Qheat,dem, i.e., for an energy system with an explicit storage only, and335

the combined demand Qheat,dem+Qi, i ∈ T ES, i.e., for an analogous energy system with an336

implicit storage only. Figure 8 shows that the transfer of the heat transfer rate Qi, i ∈ T ES337

from the TES to Building “OB 1” leads to visible but for human hardly sensible oscillations338

in the range of up to 0.2K.339

4 Conclusion340

This article presents a model compendium for common components of energy supply systems341

present in industrial or research campus areas. Moreover, the included validated building342

models rely on real-world data from the Campus North of the Karlsruhe Institute of Tech-343

nology and from the Forschungszentrum Jülich [46]. We provide one model formulation344

on the scale of energy flow rates for each component considered. The model compendium345

is structured in terms of notation and modeling principles such that it can be extended346

by additional components, e.g., solar-thermal collectors and power-to-X technologies, or by347

including high-fidelity models, e.g., for gas grids and thermal grids.348

The compendium addresses requirements of different fields of applications, namely the349

optimization of design, operation, and control of energy supply systems. Hence, it includes350
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both quasi-stationary and dynamic models as well as linearization schemes. The notation351

of all given models is unified for more transparency concerning synergies and structural dif-352

ferences of the different fields of applications. This way, we aim to support the transfer of353

models and methods between the different fields of applications. Moreover, the unified mod-354

eling framework allows investigating the influence of different formulations on computation355

times and on the accuracy of solutions. For instance, two corresponding optimization prob-356

lems can be obtained for the same individual energy system by replacing the quasi-stationary357

model of one component by the respective dynamic model.358

Additionally, we propose two optimization benchmarks exploiting the wide range of359

presented model formulations. In the first case study, a bi-criteria design optimization360

regarding total annual costs and global warming impact is performed for the generic energy361

system based on linearized quasi-stationary models. The results of the design optimization362

hint at the benefit of photovoltaic components, storage systems as well as the synergy of363

tri-generation for an ecological energy supply. In the second case study, the operational364

optimization of an energy supply system based on nonlinear dynamic models emphasizes365

the possibility to exploit varying electricity prices with the help of a combined heat and366

power engine and a thermal energy storage. For the sake of illustration, we also touch367

upon the role of thermal inertia of buildings via subsequent simulations. The case studies368

constitute substantial numerical challenges, e.g., for testing global solution methods for the369

operational optimization. Both can be easily adapted, e.g., to allow for different boundary370

conditions for the operation.371

Notably, the benchmarks come with a complete set of ready-to-use input data and the372

respective model files, namely a GAMS [66] listing file for the design optimization and a373

Modelica [64] file for the dynamic optimization of operation, available at https://git.374

es2050.org/heci/energy-benchmark. We also provide equivalent Pyomo files. The data375

sets may be extended by real-world measurements of demands and their corresponding price376

and weather data to account for model-plant-mismatch or real-world uncertainties.377

The novelty of our approach is the definition of suitable benchmarks, writing consistent378

models for important unit operations allowing for various use cases, and combining these379

models with useful data. We utilize established solution methods and the models are not380

fundamentally different from existing state-of-the-art models. We envision the modular381

compendium, the nominal data set, and the benchmarks to enable transparent comparisons382

of optimization methods for sector-coupled energy systems.383
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A Notation400

The variables, see Table 3, are specified with the help of superscripts, see Table 5, and401

assigned to certain sets via subscripts, see Table 4. Apart from this, we omit explicit time-402

dependency in equations for the sake of simplicity unless it may create confusions. Thus,403

variables which depend explicitly on time are written in standard font, e.g., load fraction λ,404

while all other variables are represented by bold symbols, e.g., minimum load fraction λmin
405

or efficiency η(λ). Whenever time-dependent variables occur in equations, these equations406

have to be satisfied at any considered time point t ≥ 0.407
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Table 3: List of variable and parameter symbols

Symbol Unit Description

β context dependent slope of line segments used in linearization

γ context dependent miscellaneous parameters

ǫ – emissivity

η – coefficient of performance or efficiency, resp.

ϑ ◦ inclination angle

θ rad phase angle of electrical voltage

λ/λ/l – load fraction

ρ kgm−3 density

σ Wm−2 K−4 Stefan Boltzmann constant

τ s time constant

φ ◦ azimuth orientation

a – absorptivity

A m2 area

b – indicator for active line segment

c EUR/(kWh) tariffs for purchasing/selling Energy

C JK−1 heat capacity

d W auxiliary variable to linearize bilinear product

E/E kWh (saved) energy

I Wm−2 solar irradiance

m/m kg mass of working fluid

M kg s−1 mass flow rate

P/P W electric power

Q/Q W thermal energy flow rate

T/T K temperature

∆T K temperature difference

V m3 volume

CAPEX EUR investment costs

gwi gCO2-eq./kWh global warming impact of energy source

GWI kgCO2-eq./a global warming impact of energy supply system

PVF a−1 present value factor

TAC EUR/a total annualized costs
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Table 4: List of sets and subscripts

Symbol Description

f ∈ F set of mass flows

j ∈ J set of intervals for piece-wise linearization

s ∈ S set of building surfaces

t ∈ T set of time points

z ∈ Z set of thermal zones

i ∈ C set of conversion units, i.e., C = AC ∪ BOI ∪ CHP ∪ CC

i ∈ G set of generators in the electrical grid G ⊆ N

i ∈ N node set of the electrical grid

i ∈ U superset of all units of any component:

AC set of absorption chiller units

BAT set of battery units

BOI set of boiler units

CC set of turbo-driven compression chiller units

CHP set of combined heat and power engine (CHP) units

HP set of heat pump units

PV set of photovoltaic (PV) units

T ES set of thermal energy storage units

WT set of wind turbine units
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Table 5: List of superscripts

Symbol Description

air air

amb ambient

cool belonging to cooling grid / period

dem demand

el belonging to electric grid

gen generation

heat belonging to heating grid / period

in input or inlet

irr irradiance

k concerning air exchange rate

lb lower bound

loss losses

max maximum

min minimum

nom nominal

out output or outlet

th thermal (cooling or heating)

tot total

U concerning U value

ub upper bound

0 reference value

B Model compendium408

In this section, economic and environmental evaluation criteria for design, operation, and409

control of a sector-coupled energy supply system as well as (non-)linear quasi-stationary410

and dynamic models are given for common components. This includes models for office411

buildings and experimental facilities; models for the conversion components boiler (BOI),412

combined heat and power engine (CHP), absorption chiller (AC), turbo-driven compression413

chiller (CC), and heat pump (HP); models for photovoltaic units (PV) and wind turbines414

(WT ) clustered as generation components; models for thermal energy storage (T ES) as well415

as batteries (BAT ); and, finally, models for the thermal and the electricity grid coupling416
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these components.417

The linearization scheme for the nonlinear efficiency curves and investment costs is given418

in C. Finally, an extension of the dynamic model of boiler and CHP for the inclusion of a419

minimum load fraction without the introduction of binaries or non-smoothness is given in420

D.421

B.1 Evaluation criteria422

In the following Sections B.1.1 and B.1.2 we introduce the total annualized costs TAC and423

the global warming impact GWI as evaluation criteria.424

B.1.1 Total annualized costs425

Total annualized costs (TAC) are an economic criterion for the evaluation of an energy426

supply system with respect to operational, investment, and maintenance costs. The TAC427

can be calculated by428

TAC =
∑

t∈T

[

8760 h · τdur(t) ·
(

cfuel(t) ·Qfuel,in(t) + cel,buy(t) · P buy(t)429

− cel,sell(t) · P sell(t)
)]

+
∑

i∈U

(

1

PVF
+ γ4,i

)

·CAPEXi430

431

with duration of time step 8760 h · τdur per year τdur, prices cfuel, cel,buy, cel,sell, purchased432

energy rate with respect to natural gas Qfuel,in, purchased and sold electricity P buy and433

P sell, respectively, present value factor PVF, factor for maintenance costs per year γ4,i,434

and capital expenditure CAPEXi.435

The present value factor can be calculated by [17]436

PVF =
(γ5 + 1)τ

h

− 1

(γ5 + 1)τh · γ5

437

with interest rate γ5, e. g., γ5 = 8%, and time horizon τh, e. g., τh = 4a. In this study, we438

obtain the CAPEX by the power law of capacity [89]439

CAPEXi = CAPEX0
i ·

(

Qnom
i

Q0
i

)γ6,i

, (1)440

with reference capital expenditure CAPEX0
i corresponding to the reference capacity Q0

i of441

1 kW, installed nominal capacity Qnom
i , and the component dependent constant γ6,i, see for442

example Table 6. The linearization of the nonlinear power law (1) is explained in C.2.443
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Table 6: Parameter values of the conversion components taken from [11]

Components CAPEX0
i /e γ6,i

BOI 2701.6 0.4502

CHP1 9332.6 0.539

CHP2 9332.6 0.539

CHP3 9332.6 0.539

AC 8847.5 0.4345

CC 444.3 0.8732

PV 4264.3 0.9502

HP 1654.7 0.6611

T EScool 57.5 0.9037

T ESheat 83.8 0.8663

BAT 2116.1 0.8382

Instead of the total annualized costs TAC, any other economic objective function could444

be chosen. However, when regarding economic and ecologic criteria, the total annualized445

costs TAC lead to Pareto fronts with low environmental impacts compared to other eco-446

nomic objective functions [76].447

B.1.2 Global warming impact448

An environmental evaluation criterion of energy supply systems is given by its global warm-449

ing impact450

GWI =
∑

t∈T

8760 h · τdur(t) ·
[

gwifuel ·Qfuel,in(t) + gwiel(t) ·
(

P in(t)− P out(t)
)

]

,451

where gwifuel and gwiel are the specific global warming impacts of the energy sources, for452

example values see Section 3.1 or [33]. Note that the specific global warming impact of453

purchased electricity is varying remarkably over time. We follow the idea of the avoided454

burden [9] and assume a credit for the global warming impact GWI when electricity is455

fed into the grid. As the operation usually affects the global warming impact significantly456

higher than the manufacturing of the components [43], we only consider the contribution of457

the operation.458
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T amb

Qirr

Figure 9: Heat flow scheme for building with relevant contributions

B.2 Buildings459

The models of buildings origin from the energy balance equation

Cz
dTz

dt
= Qin,tot

z −Qout,tot
z (2)

based on the following assumptions:460

(A1) Only internal energy is considered. In particular, the kinetic energy of the system is461

neglected and potential energy cancels out.462

(A2) The change of internal energy equals the heat flow, i.e., no additional work is applied463

to the system.464

(A3) The mass balance is fulfilled.465

As sketched in Figure 9, the physical effects which most strongly influence the temperature466

within the buildings are identified as467

(P1) Heat transport mechanisms with external air of temperature T amb via air exchange468

based on air change rate γ
amb,k
7 and heat capacity Cair,z as well as heat transfer469

through walls, windows, roof, and floor based on heat transfer coefficient γamb,U
7 ,470

(P2) Heat input by solar irradiance Qirr
s,z on the building surface s with the solar energy471

absorption coefficient γirr
8 according to [44], and472

(P3) Installed heating/cooling system with heating/cooling input Qdem
z with heating factor473

γth
9 .474

(P4) Heat capacity Cz takes into account internal walls, air, external walls, roof, and base-475

ment floor. However, it is only a fraction of the sum of all heat capacities Ctot of476
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the components of the building. This is presumably the case, since the outer shell is477

stronger coupled to the ambient temperature than to the inside and therefore does not478

significantly contribute to the indoor climate. Due to missing data, the verification479

of this hypothesis is subject to future work. The fraction Cz

Ctot is determined by the480

parameter identification in B.2.1 with γth
9 kept ≤ 1. When transferring the model to481

other buildings, a first approximation for Cz would be to calculate Ctot of the new482

building multiplied by a ratio Cz

Ctot from Table 8.483

Incorporating physical effects (P1) to (P4) into Equation (2) yields a gray-box model484

equation for each thermal zone z = 1, ..., nz, nz = card(Z)485

Cz
dTz

dt
= (γamb

7 )z ·
(

T amb − Tz

)

+ γirr
8

∑

s

(

Qirr
s,z(As,z,φs)

)

+ γth
9 Qdem

z (3)486

with (γamb
7 )z = γ

amb,U
7 ·

∑

s∈Sz

As + γ
amb,k
7 ·

Cair,z

3600 s
487

and Sz = {east, south, west, north} ∪ {roof if contained by Zone z}488

∪ {floor if contained by Zone z}.489

490

Equation (3) provides a dynamic equation for differential state Tz in dependence of491

control input Qdem
z as well as time-varying parameters T amb and Qirr

s,z, s ∈ S for any492

thermal zone z ∈ Z. Example values are given in B.2.1.493

The model is based on [73]. It is chosen to be as simple as reasonable for easy integration494

in different use cases and has been extended by considering solar irradiance. The parameter495

values given serve as first orientation for researchers without access to building models. It is496

generally advisable to estimate the parameters on data as the parameters vary depending on497

the characteristics of the buildings. The model can be adopted to different building sizes or498

orientations by changing the surface areas and the dependent solar irradiance. Moreover, in499

the case studies, we consider simple cuboid shape. If the shape of the building is different, it500

would be sensible to estimate the parameters to temperature measurements and/or explicitly501

take self-shading effects into consideration.502

Note that parameter identification via linear regression of averaged measurement data503

of the indoor temperature shows that the consideration of additional factors like human504

body heat, electrical devices, wind velocity, coupling between different zones, and wall tem-505

peratures leads to worse identification results due to linear dependencies displayed by high506

condition numbers.507
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w
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h

(a) Office building

w
l

h

(b) Experimental facility

Figure 10: Dimensions of modeled buildings

B.2.1 Parameter identification508

The parameters (γamb
7 )z, γ

irr
8 , and Cz of the gray-box model are fitted to measured tem-509

perature data Tz with γth
9 ≤ 1 and the input time series T amb, Qdem

z , and Qirr
s,z. In fact,510

dimensions and common information of the two original buildings, the office building “OB511

1” and the experimental facility “EF 1”, are retrieved from internal reports as shown in512

Figure 10 and Table 7.513

Moreover, ambient temperature T amb is given by weather data of year 2018 from Deutscher514

Wetterdienst for Stuttgart [25]. Solar irradiance Is is calculated using the horizontal global515

irradiance and the horizontal diffuse irradiance of the weather data as well as considering the516

orientation of each surface s ∈ S by angle φs according to [57]. The two original buildings517

have no solar panels installed, therefore possible shading effects are neglected. Finally, solar518

heat input Qirr
s,z is the product of solar irradiance Is and the respective area As,z for any519

surface s ∈ S and thermal zone z ∈ Z.520

The values resulting from the parameter identification process with one thermal zone521

are given in Table 8. Note that the parameters for buildings “OB 1” and “EF 1” are522

identified based on real measurement data. For the parameters of “OB 2” to “OB 6” as well523

as “OBM 1” and “OBM 2”, intervals are predefined according to empirical considerations.524

Their parameters approximately follow a uniform distribution within those intervals. The525

parameters of “EF 2” are slight variations of those of “EF 1”. The following B.2.2 depicts526

the simulation of the heating/cooling demand.527

528

B.2.2 Simulation of building demands529

For simulating realistic building demands2, the common approach of a standard PI controller

representing a thermostat is used for the control of the buildings [74]. The deviation from

2These demands are often referred to as building loads in the community for modeling, simulation, and
optimization of buildings.
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Table 7: Common information of modeled buildings and virtual PV, cf. B.4.1

Attribute Off. bldg. (OB) Off. bldg. mod. (OBM) Exp. fac. (EF)

Construction year 1973 1973 2011

Orientation φnorth 13◦ 13◦ 13◦

Position N49◦5′43.9872′′, E8◦26′1.2451′′

Stories 4 3 1

Width w [m] 12.6 12.6 12.2

Height h [m] 13.3 10.1 5.9

Length l [m] 61.4 61.4 20.0
Heat capacity air
Cair [MW sK−1]

11.4 8.7 1.8

Tmax
z Winter [◦C] 24 24 24

Tmin
z Winter [◦C] 18 18 16

Tmax
z Summer [◦C] 26 26 26

Tmin
z Summer [◦C] 20 20 18

Orientation φPV half of the units 103◦, other half 283◦ 193◦

Inclination ϑPV 10◦ 30◦

Table 8: Parameters of buildings

Building Cz
Cz

Ctot γamb
7 γ

amb,U
7 γ

amb,k
7 γirr

8 γth
9 Q

dem,max
z

[MW s/K] [–] [W/K] [W/(m2 K)] [–] [–] [–] [kW]

OB 1 1530.4 0.529 3651 0.545 0.545 0.037 1 100

OB 2 1607.3 0.556 4789 0.611 0.833 0.033 1 100

OB 3 1446.5 0.500 5015 0.750 0.750 0.045 1 100

OB 4 1522.7 0.526 3480 0.658 0.368 0.037 1 100

OB 5 1701.8 0.588 4326 0.647 0.647 0.047 1 100

OB 6 1522.7 0.526 2833 0.474 0.368 0.037 1 100

OBM 1 1201.1 0.526 3450 0.632 0.632 0.037 1 80

OBM 2 1267.9 0.556 3872 0.611 0.833 0.033 1 80

EF 1 98.5 0.443 713 0.518 0.518 0.053 1 18

EF 2 98.5 0.443 671 0.487 0.487 0.049 1 18
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desired temperature T 0 is the input. The feedback loop for any thermal zone z ∈ Z is

defined by

Qdem
z = sat

Qub
z

Qlb
z

(

γ10,z

(

Tz − T 0
z

)

+ γ11,z

∫ t

0

(

Tz(τ)− T 0
z

)

dτ

)

with saturation

satQ
ub

Qlb (u) =































Qub
z , if u > Qub

z

u , if Qlb
z ≤ u ≤ Qub

z

Qlb
z , if u < Qlb

z

.

For control and optimization, the internal temperatures have to stay within comfort zones530

Tmin
z ≤ Tz ≤ Tmax

z and the heating/cooling input within its technical limitations 0 ≤531

|Qdem
z | ≤ Qdem,max

z . Table 9 provides the controller gains γ10,z for the proportional term532

and γ11,z for the integral term as well as the used reference temperatures T 0
z. If the pa-533

rameter night shift (NS) is true, the temperature set point is changed by +1K during534

the night in cooling periods and −1K during the night in heating periods. Similarly, if535

the parameter weekend shift (WES) is true, the temperature set point is changed ±1K536

on weekends and holidays. The saturation bounds are given by Qub
z

winter
= Qdem,max

z ,537

Qlb
z

winter
= Qub

z

summer
= 0, and Qlb

z

summer
= −Qub

z

winter
.

Table 9: Control parameters of buildings

Building T 0,cool T 0,heat NS WES γ10 γ11

[◦C] [◦C] [–] [–] [kW/K] [W/(K s)]

OB 1 23 21 true true 100 0

OB 2 23 22 true true 100 0.1

OB 3 24 20 false true 100 0

OB 4 23 21 true false 100 0

OB 5 23 22 true true 100 0

OB 6 23 23 false false 100 0

OBM 1 23 21 true true 100 0

OBM 2 23 22 true true 100 0.1

EF 1 23 18 true false 10 0.2

EF 2 21 19 false false 10 0.2

538

Both electrical and thermal demand of a campus consisting of 6 office buildings of type539

“OB”, 2 smaller office buildings of type “OBM” (office building modified), and 2 experimen-540

tal facilities “EF” are simulated based on Equation (3) and the model parameters discussed541

in B.2.1, see Figure 11. Note that the heating demand is given by positive thermal demand542

values and the cooling demand by the absolute of the negative thermal demand values.543

c©Sass et al. Accepted by Comp. & Chem. Eng. Page 27 of 50



Model Compendium, Data, and Benchmarks for Energy Systems 24.1.2020

(a) Aggregated demand data of OB 1 to 6 and OBM 1 and 2

(b) Aggregated demand data of EF 1 and 2

(c) Sum of data in Figures 11(a) and 11(b)

Figure 11: Aggregated demand data for the different types of buildings and a complete
campus
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The aggregated electrical demand profile for the ten buildings is the sum of 1) three544

generated demand profiles following the G0 demand profile of [12] with Saturdays treated545

like Sundays as well as different offsets and gains for each demand profile for three OB/OBM546

buildings; 2) measured data of “OB 1” for the years 2014 to 2018 which are shifted to start547

at the same day of week in order to retrieve five more OB/OBM demand profiles; and 3)548

measured data of “EF 1” for the years 2017 and 2018 to get two demand profiles for the EF549

buildings.550

Weather and demand data (“WeatherAndDemandTimeSeries.csv”) as well as the data551

shown in Figures 2 and 3 (“ComparisonMeasSimTimeSeries.csv”) are available at https:552

//git.es2050.org/heci/energy-benchmark in directory “App Weather And Demand”.553

B.3 Conversion components554

The quasi-stationary model for general conversion components555

C = BOI ∪ CHP ∪HP ∪AC ∪ CC is given as in [97] by556

Qout
i = η

heat/cool
i (λi) ·Q

in
i ∀ i ∈ C \ HP , (4a)557

Qout
i = ηheat

i (λi) · P
in
i ∀ i ∈ HP , (4b)558

P out
i = ηel

i (λi) ·Q
in
i ∀ i ∈ CHP , (4c)559

Qout
i = λi ·Q

nom
i ∀ i ∈ C , (4d)560

λmin
i ≤ λi ≤ 1 ∀ i ∈ C , (4e)561

Qmin
i ≤ Qnom

i ≤ Qmax
i ∀ i ∈ C , (4f)562

563

with energy balances based on respective efficiencies (4a) to (4c), equation (4d) determining564

load fraction λ, bounds (4e) and (4f). Note that η is the efficiency for boilers and CHPs,565

while it is the coefficient of performance (COP) for chillers and heat pumps.566

For obtaining a dynamic model, equation (4a) can be replaced by567

dλi

dt
=

1

τ i
·

(

η
heat/cool
i (λi) ·

Qin
i

Qnom
i

− λi

)

∀ i ∈ C , (5)568

see [83] for more details. Note that this dynamic model is based on a simplified energy569

balance that considers heat transfer rates rather than temperatures. Furthermore, all heat570

losses are assumed to be proportional to the input heat transfer rate.571

The efficiency or COP curves η of the respective components are given in Table 10. Note572

that the given curves are used for both the quasi-stationary and the dynamic models. Apart573

from this, all efficiency and COP curves are assumed to be temperature independent, which574
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Table 10: Example values for efficiency and COP curves of the considered conversion com-
ponents

Formula and values Reference

Boiler i ∈ BOI

ηheat
i (λi) =

21.75378·λ3
i−7.00130·λ2

i+1.39731·λi−0.07557

20.66646·λ3
i−5.34196·λ2

i+0.67774·λi+0.03487
·ηnom,heat

i
[96] based on [30]

η
nom,heat

i
= 0.8 [96]

Combined heat and power engine i ∈ CHP

ηheat
i (λi) =

(

−0.0768 · λ2
i − 0.0199 · λi + 1.0960

)

· ηnom,heat

i
(Qnom

i ) Approx. to producer infor-
mation

ηel
i (λi) =

(

−0.2611 · λ2
i + 0.6743 · λi + 0.5868

)

· ηnom,el

i
(Qnom

i ) Approx. to producer infor-
mation

η
nom,heat

i
(Qnom

i ) = −3.55 · 10−5 ·
Qnom

i
1 kW

+ 0.498 [96]

η
nom,el

i
(Qnom

i ) = 3.55 · 10−5 ·
Qnom

i
1 kW

+ 0.372 [96]

ηnom,tot = 0.87 [96]

Heat pump i ∈ HP

ηheat
i (λi) = 0.36/ηcarnot Approx. to data sheet [23]

ηcarnot = 1 − T
THP

; THP = 273.15 + 60K

Absorption chiller i ∈ AC

ηcool
i (λi) =

λi

0.83330·λ2
i−0.08330·λi+0.24999

·ηnom,cool

i
[96] based on [30]

η
nom,cool

i
= 0.67 [96]

Turbo-driven compression chiller chiller i ∈ CC

ηcool
i (λi) =

(

0.8615 · λ3
i − 3.5494 · λ2

i + 3.6790 · λi + 0.0126
)

· ηnom,cool

i
[96]

η
nom,cool

i
= 5.54 [96]

is reasonable for boilers and CHPs but not necessarily for chillers and heat pumps [4].575

B.4 Generation components576

In the context of this article, the output of generation components is limited by their capac-577

ity and the availability of renewable energy resources, namely solar irradiation and wind.578

However, the maximum available power may not be exploited, e.g., if this would impair grid579

stability or exceed storage capabilities.580

B.4.1 Photovoltaic units581

The electrical power Pi provided by a photovoltaic (PV) unit i ∈ PV is limited by the solar582

irradiance I, the total area Ai of the unit and its efficiency ηi via583

Pi ≤ Ai · ηi · I, i ∈ PV .584

Thereby, I accounts for direct, diffuse, and reflected solar irradiance onto the tilted PV585

unit’s area.586

Furthermore, the PV unit cannot exceed its nominal capacity587

Pi ≤ Ai · P
nom
i , i ∈ PV ,588
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where the nominal capacity depends on the area of the unit as well [78].589

The average and maximum efficiency of current German PV technologies are 17% and590

larger than 20%, respectively, while the average performance ratio ranges from 80 to 90% [100].591

Thus, we choose efficiency ηi = 0.19 and nominal capacity P nom
i = 0.171 kWm−2 ·Ai as an592

example.593

For the case studies, the PV components are virtually installed on the roofs of the594

buildings described in B.2 with the parameters given in Table 7. To avoid self-shading ef-595

fects of the panels, it is assumed that the rows have a minimum distance of three times596

the (projected) height of the units. Thus, for an inclination of 30◦ the maximum avail-597

able PV surface area is 42% of the total roof area, provided that the complete width of598

the roof can be used to install the panels. Applying that rule to the two experimental599

facility buildings, we have Amax
EF ≈ 205m2. The PV area for the office buildings is up to600

85% of the total roof surface, i.e. Amax
OB∪OBM ≈ 5261m2, since the inclination is only 10◦.601

The irradiance I is calculated as described in B.2.1. The data is included in WeatherAnd-602

DemandTimeSeries.csv available at https://git.es2050.org/heci/energy-benchmark in603

directory “App Weather And Demand”.604

B.4.2 Wind turbine605

The maximum power output of a wind turbine is determined by the wind velocity, which606

corresponds to the part-load behavior of the wind turbine, and its nominal capacity. We607

introduce efficiency ηel
WT (λi) for the mapping of wind velocity to the power output for each608

wind turbine i ∈ WT and, thus, obtain609

P out
i ≤ ηel

i (λi) · P
nom
i ∀ i ∈ WT .610

As an example, the efficiency611

ηel
i (λi) =























0 ∀ λi ≤ 0.33

1.5393 · λi − 0.5091 ∀ 0.33 ≤ λi ≤ 1.00

1 ∀ λi ≥ 1.00

(6)612

given by [27] may be used. Thereby, load fraction λi is the wind velocity at each time step,613

normalized by the rated wind velocity, e.g. 15 m/s.614
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B.5 Storage components615

B.5.1 TES616

In this article, we only take into account a lumped model of a hot/cold water storage tank for617

the thermal energy storage (TES). More sophisticated multi-layer tank models are discussed618

in, e.g., [91, 85].619

The energy balance based on heat transfer rates of such a simple TES model yields620

dEi

dt
= ηin

i Qin
i −

1

ηout
i

Qout
i −

1

τ loss
i

Ei ∀i ∈ T ES (7)621

Ei(0) = Ei,0 ∀i ∈ T ES .622

623

with added and withdrawn heat transfer rates Qin
i and Qout

i , respectively, efficiencies ηin
i624

and ηout
i as well as self-discharge in dependence of the currently stored energy Ei with time625

constant τ loss
i . As an example, constant values τ loss

i = 200 h for the time constant of the626

heat loss and ηin
i = 1

ηout
i

= 0.95 for the efficiencies may be chosen. If input and output627

efficiencies coincide628

ηi := ηin
i =

1

ηout
i

,629

as in our example, input and output heat transfer rate can be aggregated, e.g., by Qi :=630

Qin
i −Qout

i . Thus, Equation 7 can be reformulated as631

dEi

dt
= ηi Qi −

1

τ loss
i

Ei ∀i ∈ T ES (8)632

With reformulation (8) the number of degrees of freedom is reduced, since only the total633

heat transfer rate flowing through the thermal energy storage is considered. Note that634

the dynamics in Equation (7) are commonly discretized using the implicit [84] or explicit635

Euler scheme [6]. However, in benchmark case study “Operational optimization” we stick636

to formulation (8), since a more sophisticated integration scheme is incorporated in the637

dynamic optimization framework used. Aside from that, binary variables can be introduced638

to prevent simultaneous charging and discharging, cf. battery model in B.5.2. The storage639

tank’s capacity Enom
i serves as an upper bound for the TES and presents a design variable640

determining its capacity641

0 ≤ Ei ≤ Enom
i ∀i ∈ T ES . (9)642

In the design optimization, capacity Enom
i is limited by643

Emin
i ≤ Enom

i ≤ Emax
i ∀i ∈ T ES . (10)644
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Moreover, the heat transfer rates for charging and discharging the TES are limited by645

0 ≤ Qin
i ≤

1

τ in
Enom

i ∀i ∈ T ES (11)646

0 ≤ Qout
i ≤

1

τ out
Enom

i ∀i ∈ T ES (12)647

648

with rates 1/τ in and 1/τ out limiting the charging and discharging process, respectively.649

Appropriate values are given by 1/τ in = 1/τ out = 1h−1, cf. [6].650

B.5.2 Battery651

A generic model of an electrical battery is given by replacing the heat transfer rates in652

Equation (7) by the electrical power applied to the battery. However, self-discharge is often653

negligible for (Li-Ion) batteries [103]. This yields for any battery i ∈ BAT654

dEi

dt
= ηin

i P in
i +

1

ηout
i

P out
i ∀i ∈ BAT (13)655

Ei(0) = Ei,0 ∀i ∈ BAT .656

657

As an example, we choose values ηin
i = 0.920 ≈ ηout

i = 0.926 based on [11] and the round-trip658

efficiency reported in [92].659

Constraints (9) to (12) apply analogously to the battery model if heat transfer rate Q is660

swapped with power P where applicable. In contrast to a TES, the charging and discharging661

process of batteries is typically not limited by rate constraints. [11] report time constants662

τ in = τ out = 4.2 · 10−5 h, which lead to large upper bounds in (11) and (12). Note that the663

constraints implied by underlying power electronics are usually considerably tighter.664

Similar to the case of TES models, cf. B.5.1, it is quite common to consider the discrete-665

time counter part of (13) in scheduling of power systems. To this end, the ODE can be666

discretized by the forward Euler method considering averaged values of P in(t) and P out(t)667

and a constant step width of e.g. 15min. We remark that the given model does not account668

for specifics of all existing battery technologies. For example, detailed models for RedOx-669

Flow [15] and other battery types are beyond the scope of this work.670

In contrast to TES models, a battery cannot be charged and discharged at the same671

time. Put differently, the battery cannot actively dissipate energy. Hence, the constraint672

P in
i · P out

i = 0, ∀i ∈ BAT673

is added. As this constraint leads to feasible sets with non-differentiable boundaries, it has674
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been suggested to either neglect it [16], or to relax it as follows675

P in
i · P out

i = ε > 0, ∀i ∈ BAT ,676

see e.g. [3] for details.677

Alternatively, one may model the asymmetric charging and discharging efficiencies by678

means of integer decision variables. [70] proposed a mixed-integer formulation based on679

1− ηin
i =

1

ηout
i

− 1 = ηi ∀i ∈ BAT , (14)680

which is a common assumption for batteries in the literature in place of ηin
i = ηout

i . Substi-681

tution of (14) into (13) gives682

dEi

dt
= (1− ηi)P

in
i + (1 + ηi)P

out
i ∀i ∈ BAT .683

The integer variable zi ∈ {−1, 1} allows to discriminate charging and discharging. Together684

with aggregating input and output, the following mixed-integer formulation685

dEi

dt
= (1 + ziηi)Pi, ∀zi ∈ {−1, 1}, i ∈ BAT686

is obtained.687

B.6 Grid models688

We consider thermal, electricity, and gas grids as components and use simple models. In689

particular, gas is only a potential energy resource and the gas grid is approximated as a690

point source with a known gas price.691

B.6.1 Thermal grid692

We do not consider an external thermal grid. Thus, cooling and heating supply have to693

match the aggregation of building demands and storage capacities.694

According to [67], an energy balance is formulated for each node j of the thermal grid,695

comprising generation, consumption, storage, and interaction with neighboring nodes l. For696
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a given energy supply system, this results in697

∑

i∈BOI∪CHP∪T ESheat

Qheat,out
i,j +

∑

l

(

γheat
l→j ·Qheat

l→j −Qheat
j→l

)

698

= Qheat,dem
j +

∑

k∈AC∪T ESheat

Qheat,in
k,j699

700

for each node j of the heating grid and701

∑

i∈AC∪CC∪T EScool

Qcool,out
i,j +

∑

l

(

γcool
l→j ·Q

cool
l→j −Qcool

j→l

)

= Qcool,dem
j +

∑

k∈T EScool

Qcool,in
k,j702

for each node j of the cooling grid, where parameter γ is a loss factor. [67] and [71] further703

approximate the loss factor γ proportional to the distance to the neighboring node l.704

B.6.2 Electricity grid705

A simplified model of a balanced electrical AC (alternating current) grid can be given by a706

lumped-parameter system at steady-state, which can be described by the triple (N ,G, Y ),707

where N = {1, . . . , N} is the set of buses (nodes), G ⊆ N is the non-empty set of generators,708

and Y = G+ jB ∈ C
N×N is the bus admittance matrix [41]. The off-diagonal entries of Y709

can be written as yli = gli+jbli, whereby gli is the conductance for the line li, respectively,710

bli is the line susceptance. The diagonal entries of Y are yll = yl +
∑

l 6=m yli, where yl711

accounts for linear load connected to bus l.712

For the sake of simplicity, we assume that there is only one generator per bus (i.e.713

G ⊆ N ). Thus, at each bus i ∈ N we have714

Pi = P dem
i + P gen

i ,715

where by convention P gen
i = 0 if i 6∈ G. The parameter P dem

i models the demand of electrical716

power at node i, it also captures uncontrollable renewable generation, e.g., the maximum717

power output of PV components. Batteries are considered to be generators.718

To reduce nonconvexities, lossless lines, small phase differences, and constant voltage719

magnitudes are commonly assumed. With these assumptions, the overall active power bal-720

ance for the grid reads721

∑

i∈N

Pi = 0. (15)722

Note that power balance (15) is used in the given benchmark case studies.723
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λi

= Qout
i /Qnom

i

λ in
i = Qin

i ·ηi
nom/Qnom

i, j−1

i, j

β λ
i, j−1

β λ
i, j

λ out
i, j−1

λ in
i, j−1

λ out
i, j

λ in
i, j

λ out
i, j+1

λ in
i, j+1

li, j

Figure 12: Piecewise linearization of part-load behavior of component i ∈ U adapted from
[61]

A simple expression for the phase angles θi at each bus is given by724

P = −
∑

i∈N\{l}

bli(θl − θi) ⇐⇒ P = −Bθ , (16)725

726

where B is the imaginary part of the bus admittance matrix Y , P is the vector of electrical727

powers, and θ is the vector of phase angles. The above equations (16) are the so-called DC728

(direct current) power flow equations [41].729

C Linearization scheme730

C.1 Linearization of efficiency/COP curves731

In this article, we assume that efficiency or COP ηi is a given, possibly nonlinear function in732

dependence of load fraction λi := Qout
i /Qnom

i , see Table 10. According to [97], it is favorable733

to linearize the functional dependency of input heat transfer rate Qin
i on output heat transfer734

rate Qout
i735

Qin
i =

Qout
i

ηi(λi)
=

λi

ηi(λi)
·Qnom

i (17)736

rather than linearizing the nonlinear functions ηi for the considered components i ∈ U . Note737

that we linearize based on normalized variables λi and λin
i := Qin

i · ηnom/Qnom
i .738

We apply a piecewise linearization as depicted in Figure 12. In fact, the feasible interval739

of variable λi ∈ [λmin
i , 1] is decomposed into

∣

∣J λ
∣

∣ = nλ intervals with supporting points740

λmin
i = λout

i,0 < . . . < λout
i,nλ−1 < λout

i,nλ = 1, j =
{

0, . . . , nλ
}

for any component i ∈ U . For741

each time step t ∈ T , the independent variable li,j in interval j ∈ J λ is switched on or off742
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Table 11: Supporting points of part-load behavior

Components λin
i,1 λout

i,1 λin
i,2 λout

i,2 λin
i,3 λout

i,3

BOI 0.2 0.22608 1 1 – –
CHP1/2/3 (th) 0.5 0.46035 1 1 – –
CHP1/2/3 (el) 0.1 0.20251 1 1 – –
AC 0.2 0.25006 0.60778 0.48792 1 1
CC 0.2 0.31204 0.70497 0.59543 1 1
HP 0.2 0.21584 1 1 – –

by a binary bλi,j ∈ {0, 1}743

λout
i,j · bλi,j ≤ li,j ≤ λout

i,j+1 · b
λ
i,j ∀ j ∈ J λ\

{

nλ
}

, ∀ i ∈ U .744

In this way, at most one interval can be active745

∑

j∈J λ

bλi,j ≤ 1 ∀ i ∈ U746

and the resulting load fraction λi is obtained by747

λi =
∑

j∈J λ

li,j ∀ i ∈ U .748

Based on supporting points
(

λin
i,j ,λ

out
i,j

)

, the slope parameter βλ
i,j of the line segments j is749

given by750

βλ
i,j =

λin
i,j+1 − λin

i,j

λout
i,j+1 − λout

i,j

∀ j ∈ J λ, ∀ i ∈ U .751

This yields the piecewise linear formulation752

λin
i =

∑

j∈J λ

bλi,j · λ
in
i,j + βλ

i,j ·
(

li,j − λout
i,j · bλi,j

)

∀ i ∈ U . (18)753

Note that load fraction li,j equals 0 if the binaries bλi,j of all intervals ∀ j ∈ J λ are 0.754

Example values for the linearization of the functions given in Table 10 is given in Table 11.755

Inserting the definition of the load fraction λin
i into Eq. (18) with li,j = Qout

i,j /Q
nom
i gives756

Qin
i =

∑

j∈J λ

λin
i,j ·

bλi,j ·Q
nom
i

ηnom
+

βλ
i,j

ηnom
·
(

Qout
i,j − λout

i,j · bλi,j ·Q
nom
i

)

∀ i ∈ U (19)757

758

and759

λout
i,j · bλi,j ·Q

nom
i ≤ Qout

i,j ≤ λout
i,j+1 · b

λ
i,j ·Q

nom
i ∀ j ∈ J λ\

{

nλ
}

, ∀ i ∈ U . (20)760

761
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Due to product bλi,j · Q
nom
i , Equations (19) and (20) give a piecewise linearization of func-762

tion (17) only if the nominal capacity Qnom
i is fixed. Otherwise, e.g., for design optimization,763

this bilinear product of a binary variable bλi,j and a continuous variable Qnom
i can be lin-764

earized with the help of Glover’s linearization [39]. Thus, we substitute the bilinear product765

in Equations (19) and (20) with a new time-dependent variable di,j and obtain766

Qin
i =

∑

j∈J λ

λin
i,j ·

di,j
ηnom

+
βλ
i,j

ηnom
·
(

Qout
i,j − λout

i,j · di,j
)

∀ i ∈ U ,767

λout
i,j · di,j ≤ Qout

i,j ≤ λout
i,j+1 · di,j ∀ j ∈ J λ, ∀ i ∈ U .768

769

Moreover, bounds770

Qmin
i ≤ Qnom

i ≤ Qmax
i771

772

are replaced by773

bλi,j ·Q
min
i ≤ di,j ≤ bλi,j ·Q

max
i (21)774

(

1− bλi,j
)

·Qmin
i ≤ Qnom

i − di,j ≤
(

1− bλi,j
)

·Qmax
i . (22)775

776

On the one hand, Equation (21) guarantees that the new variable di,j is 0 if the corresponding777

binary bλi,j equals 0. On the other hand, variable di,j equals capacity Qnom
i if binary bλi,j778

equals 1 due to Equation (22).779

C.2 Linearization of investment costs780

Analogously to C.1, we can replace the nonlinear investment costs781

CAPEXi (Q
nom
i ) = CAPEX0

i ·

(

Qnom
i

Q0
i

)γ6,i

782
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with783

CAPEXi (Q
nom
i ) =

∑

j∈J

bi,j ·CAPEXlb
i,j+ β

Q
i,j ·

(

Qnom
i,j −Qlb

i,j · bi,j
)

784

β
Q
i,j =

CAPEXlb
i,j+1 −CAPEXlb

i,j

Qlb
i,j+1 −Qlb

i,j

∀ j ∈ JQ
785

Qnom
i =

∑

j∈J

Qnom
i,j786

Qlb
i,j · b

Q
i,j ≤ Qnom

i,j ≤ Qlb
i,j+1 · b

Q
i,j ∀ j ∈ JQ\{nQ}787

∑

j∈JQ

bQi,j ≤ 1788

bQi,j ∈ {0, 1} ∀ j ∈ JQ ,789

790

where the feasible interval of variable Qnom
i ∈

[

Qmin
i ,Qmax

i

]

is decomposed into
∣

∣JQ
∣

∣ = nQ
791

intervals with bounds Qmin
i = Qlb

i,0 < . . . < Qlb
i,n−1 < Qlb

i,nQ = Qmax
i , j ∈ JQ for any792

unit i ∈ U . Example values of the supporting points
(

CAPEXlb
i,j ,Q

lb
i,j

)

for the considered793

components are given in Table 12.794

Table 12: Supporting points of investment costs

Comp. Qlb
i,1 CAPEX

lb
i,1 Qlb

i,2 CAPEX
lb
i,2 Qlb

i,3 CAPEX
lb
i,3 Qlb

i,4 CAPEX
lb
i,4

[kW] [e ] [kW] [e ] [kW] [e ] [kW] [e ]

BOI 100 27680.7 2000 86955 – – – –

CHP1 100 138090 1400 436869 – – – –

CHP2 1400 436869 2300 643716 – – – –

CHP3 2300 643716 3200 850563 – – – –

AC 100 71404 711 155917.5 2000 243252 – –

CC 400 89006 10000 1572302 – – – –

PV 5 32858.3 55 295651.5 550 2187492 – –

HP 5 5113.7 27 14999.4 83 31260.1 200 55486

BAT 0 0 40 47323 120 118368 2000 1238006

T EScool 0 0 20 14492 1000 35264 25000 543968

T ESheat 0 0 20 1929 23175 502079 115000 2086885

Note that the nonlinear function CAPEXi only depends on the independent variable795

Qnom
i apart from constant parameter values and, thus, is either constant (operational op-796

timization) or univariate (design optimization). In contrast to C.1, the application of797

Glover’s linearization is therefore not necessary for the linearization of the investment costs798

CAPEXi.799
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D Smoothing of efficiency regarding minimum load frac-800

tion801
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Figure 13: Relative efficiency with minimum load fraction λmin
i , i ∈ BOI ∪ CHP as given

in Table 10

In this section, we include the minimum load fraction into the dynamic model equations802

of boiler and CHP, see B.3, to show the expandability of the presented model equations.803

More precisely, the hyperbolic tangent is used as a smooth switching function between turned804

off mode and an operation with a load fraction larger than the minimum load fraction. Thus,805

no binary controls are introduced and, in particular, we can avoid adding a combinatorial806

complexity to a dynamic model.807

As a complication, the turned off mode with load fraction λi = 0 poses a stable point of

the dynamics in Equation (5). In fact, point (dλi

dt , λi) = (0, 0) cannot be escaped independent

of the chosen control value Qin
i

dλi

dt
|λi=0 =

1

τ i
·

(

η
heat/cool
i (λi)|λi=0 ·

Qin
i

Qnom
i

− 0

)

=
1

τ i
·

(

0 ·
Qin

i

Qnom
i

− 0

)

= 0 ∀ i ∈ C .

without a binary control turning the boiler or CHP explicitly on. Therefore, the zero-

operation below the minimum load fraction is replaced by a linear operation with sufficient

slope, see Figure 13. As the result, original efficiency ηheat
i (λi), i ∈ BOI ∪ CHP is replaced

by the adapted smooth efficiency

(

0.5 + 0.5 · tanh
(

γ1 · (λi − λmin
i )

)

)

· ηheat
i (λi)

+
(

0.5− 0.5 · tanh
(

γ1 · (λi − λmin
i )

)

)

· (γ2 + γ3 · λi) ,

in Equation (5). As an example, parameter values γ1 = 30, γ3 = 1.2, and γ2 = 0.0001 are808

chosen.809
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