000877451 001__ 877451
000877451 005__ 20240709081909.0
000877451 0247_ $$2doi$$a10.1016/j.jprocont.2020.05.004
000877451 0247_ $$2ISSN$$a0959-1524
000877451 0247_ $$2ISSN$$a1873-2771
000877451 0247_ $$2Handle$$a2128/25025
000877451 0247_ $$2WOS$$aWOS:000543364100002
000877451 037__ $$aFZJ-2020-02204
000877451 082__ $$a004
000877451 1001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b0
000877451 245__ $$aA wave propagation approach for reduced dynamic modeling of distillation columns: Optimization and control
000877451 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877451 3367_ $$2DRIVER$$aarticle
000877451 3367_ $$2DataCite$$aOutput Types/Journal article
000877451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591623945_14891
000877451 3367_ $$2BibTeX$$aARTICLE
000877451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877451 3367_ $$00$$2EndNote$$aJournal Article
000877451 520__ $$aReduced models enable real-time optimization of large-scale processes. We propose a reduced model of distillation columns based on multicomponent nonlinear wave propagation (Kienle 2000). We use a nonlinear wave equation in dynamic mass and energy balances. We thus combine the ideas of compartment modeling and wave propagation. In contrast to existing reduced column models based on nonlinear wave propagation, our model deploys a hydraulic correlation. This enables the column holdup to change as load varies. The model parameters can be estimated solely based on steady-state data. The new transient wave propagation model can be used as a controller model for flexible process operation including load changes. To demonstrate this, we implement full-order and reduced dynamic models of an air separation process and multi-component distillation column in Modelica. We use the open-source framework DyOS for the dynamic optimizations and an Extended Kalman Filter for state estimation. We apply the reduced model in-silico in open-loop forward simulations as well as in several open- and closed-loop optimization and control case studies, and analyze the resulting computational speed-up compared to using full-order stage-by-stage column models. The first case study deals with tracking control of a single air separation distillation column, whereas the second one addresses economic model predictive control of an entire air separation process. The reduced model is able to adequately capture the transient column behavior. Compared to the full-order model, the reduced model achieves highly accurate profiles for the manipulated variables, while the optimizations with the reduced model are significantly faster, achieving more than 95% CPU time reduction in the closed-loop simulation and more than 96% in the open-loop optimizations. This enables the real-time capability of the reduced model in process optimization and control.
000877451 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877451 588__ $$aDataset connected to CrossRef
000877451 7001_ $$0P:(DE-HGF)0$$aOffermanns, Christoph$$b1
000877451 7001_ $$0P:(DE-HGF)0$$aEcker, Anna-Maria$$b2
000877451 7001_ $$0P:(DE-HGF)0$$aPottmann, Martin$$b3
000877451 7001_ $$0P:(DE-HGF)0$$aZapp, Gerhard$$b4
000877451 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b5
000877451 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b6$$eCorresponding author$$ufzj
000877451 773__ $$0PERI:(DE-600)2000438-2$$a10.1016/j.jprocont.2020.05.004$$gVol. 91, p. 12 - 24$$p12 - 24$$tJournal of process control$$v91$$x0959-1524$$y2020
000877451 8564_ $$uhttps://juser.fz-juelich.de/record/877451/files/waveModelColumnAsu.pdf$$yPublished on 2020-05-22. Available in OpenAccess from 2022-05-22.
000877451 8564_ $$uhttps://juser.fz-juelich.de/record/877451/files/waveModelColumnAsu.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-22. Available in OpenAccess from 2022-05-22.
000877451 909CO $$ooai:juser.fz-juelich.de:877451$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b6$$kFZJ
000877451 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b6$$kRWTH
000877451 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877451 9141_ $$y2020
000877451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877451 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PROCESS CONTR : 2018$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000877451 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877451 920__ $$lyes
000877451 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877451 9801_ $$aFullTexts
000877451 980__ $$ajournal
000877451 980__ $$aVDB
000877451 980__ $$aUNRESTRICTED
000877451 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877451 981__ $$aI:(DE-Juel1)ICE-1-20170217