001     877451
005     20240709081909.0
024 7 _ |a 10.1016/j.jprocont.2020.05.004
|2 doi
024 7 _ |a 0959-1524
|2 ISSN
024 7 _ |a 1873-2771
|2 ISSN
024 7 _ |a 2128/25025
|2 Handle
024 7 _ |a WOS:000543364100002
|2 WOS
037 _ _ |a FZJ-2020-02204
082 _ _ |a 004
100 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A wave propagation approach for reduced dynamic modeling of distillation columns: Optimization and control
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591623945_14891
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Reduced models enable real-time optimization of large-scale processes. We propose a reduced model of distillation columns based on multicomponent nonlinear wave propagation (Kienle 2000). We use a nonlinear wave equation in dynamic mass and energy balances. We thus combine the ideas of compartment modeling and wave propagation. In contrast to existing reduced column models based on nonlinear wave propagation, our model deploys a hydraulic correlation. This enables the column holdup to change as load varies. The model parameters can be estimated solely based on steady-state data. The new transient wave propagation model can be used as a controller model for flexible process operation including load changes. To demonstrate this, we implement full-order and reduced dynamic models of an air separation process and multi-component distillation column in Modelica. We use the open-source framework DyOS for the dynamic optimizations and an Extended Kalman Filter for state estimation. We apply the reduced model in-silico in open-loop forward simulations as well as in several open- and closed-loop optimization and control case studies, and analyze the resulting computational speed-up compared to using full-order stage-by-stage column models. The first case study deals with tracking control of a single air separation distillation column, whereas the second one addresses economic model predictive control of an entire air separation process. The reduced model is able to adequately capture the transient column behavior. Compared to the full-order model, the reduced model achieves highly accurate profiles for the manipulated variables, while the optimizations with the reduced model are significantly faster, achieving more than 95% CPU time reduction in the closed-loop simulation and more than 96% in the open-loop optimizations. This enables the real-time capability of the reduced model in process optimization and control.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Offermanns, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ecker, Anna-Maria
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pottmann, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zapp, Gerhard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jprocont.2020.05.004
|g Vol. 91, p. 12 - 24
|0 PERI:(DE-600)2000438-2
|p 12 - 24
|t Journal of process control
|v 91
|y 2020
|x 0959-1524
856 4 _ |y Published on 2020-05-22. Available in OpenAccess from 2022-05-22.
|u https://juser.fz-juelich.de/record/877451/files/waveModelColumnAsu.pdf
856 4 _ |y Published on 2020-05-22. Available in OpenAccess from 2022-05-22.
|x pdfa
|u https://juser.fz-juelich.de/record/877451/files/waveModelColumnAsu.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877451
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PROCESS CONTR : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21