000877452 001__ 877452
000877452 005__ 20240709081909.0
000877452 0247_ $$2doi$$a10.1016/j.compchemeng.2020.106891
000877452 0247_ $$2ISSN$$a0098-1354
000877452 0247_ $$2ISSN$$a1873-4375
000877452 0247_ $$2Handle$$a2128/25026
000877452 0247_ $$2WOS$$aWOS:000555543100008
000877452 037__ $$aFZJ-2020-02205
000877452 082__ $$a660
000877452 1001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b0
000877452 245__ $$aDynamic optimization with complementarity constraints: Smoothing for direct shooting
000877452 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877452 3367_ $$2DRIVER$$aarticle
000877452 3367_ $$2DataCite$$aOutput Types/Journal article
000877452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591625174_14894
000877452 3367_ $$2BibTeX$$aARTICLE
000877452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877452 3367_ $$00$$2EndNote$$aJournal Article
000877452 520__ $$aWe consider optimization of differential-algebraic equations (DAEs) with complementarity constraints (CCs) of algebraic state pairs. Formulating the CCs as smoothed nonlinear complementarity problem (NCP) functions leads to a smooth DAE, allowing for the solution in direct shooting. We provide sufficient conditions for well-posedness. Thus, we can prove that with the smoothing parameter going to zero, the solution of the optimization problem with smoothed DAE converges to the solution of the original optimization problem. Four case studies demonstrate the applicability and performance of our approach: (i) optimal loading of an overflow weir buffer tank, (ii) batch vaporization setpoint tracking, (iii) operation of a tank cascade, and (iv) optimal start-up of a rectification column. The numerical results suggest that the presented approach scales favorably: the computational time for solution of the tank cascade problem scales not worse than quadratically with the number of tanks and does not scale with the control grid.
000877452 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877452 588__ $$aDataset connected to CrossRef
000877452 7001_ $$0P:(DE-HGF)0$$aLüken, Lukas$$b1
000877452 7001_ $$0P:(DE-HGF)0$$aSchäfer, Pascal$$b2
000877452 7001_ $$0P:(DE-HGF)0$$aVaupel, Yannic$$b3
000877452 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b4
000877452 7001_ $$0P:(DE-HGF)0$$aBiegler, Lorenz T.$$b5
000877452 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b6$$eCorresponding author$$ufzj
000877452 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.106891$$gVol. 139, p. 106891 -$$p106891 -$$tComputers & chemical engineering$$v139$$x0098-1354$$y2020
000877452 8564_ $$uhttps://juser.fz-juelich.de/record/877452/files/MpccSingleShooting.pdf$$yPublished on 2020-05-21. Available in OpenAccess from 2022-05-21.
000877452 8564_ $$uhttps://juser.fz-juelich.de/record/877452/files/MpccSingleShooting.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-21. Available in OpenAccess from 2022-05-21.
000877452 909CO $$ooai:juser.fz-juelich.de:877452$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000877452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b6$$kFZJ
000877452 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b6$$kRWTH
000877452 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877452 9141_ $$y2020
000877452 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877452 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877452 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877452 920__ $$lyes
000877452 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877452 9801_ $$aFullTexts
000877452 980__ $$ajournal
000877452 980__ $$aVDB
000877452 980__ $$aUNRESTRICTED
000877452 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877452 981__ $$aI:(DE-Juel1)ICE-1-20170217