001     877452
005     20240709081909.0
024 7 _ |a 10.1016/j.compchemeng.2020.106891
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/25026
|2 Handle
024 7 _ |a WOS:000555543100008
|2 WOS
037 _ _ |a FZJ-2020-02205
082 _ _ |a 660
100 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dynamic optimization with complementarity constraints: Smoothing for direct shooting
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591625174_14894
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider optimization of differential-algebraic equations (DAEs) with complementarity constraints (CCs) of algebraic state pairs. Formulating the CCs as smoothed nonlinear complementarity problem (NCP) functions leads to a smooth DAE, allowing for the solution in direct shooting. We provide sufficient conditions for well-posedness. Thus, we can prove that with the smoothing parameter going to zero, the solution of the optimization problem with smoothed DAE converges to the solution of the original optimization problem. Four case studies demonstrate the applicability and performance of our approach: (i) optimal loading of an overflow weir buffer tank, (ii) batch vaporization setpoint tracking, (iii) operation of a tank cascade, and (iv) optimal start-up of a rectification column. The numerical results suggest that the presented approach scales favorably: the computational time for solution of the tank cascade problem scales not worse than quadratically with the number of tanks and does not scale with the control grid.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lüken, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Biegler, Lorenz T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2020.106891
|g Vol. 139, p. 106891 -
|0 PERI:(DE-600)1499971-7
|p 106891 -
|t Computers & chemical engineering
|v 139
|y 2020
|x 0098-1354
856 4 _ |y Published on 2020-05-21. Available in OpenAccess from 2022-05-21.
|u https://juser.fz-juelich.de/record/877452/files/MpccSingleShooting.pdf
856 4 _ |y Published on 2020-05-21. Available in OpenAccess from 2022-05-21.
|x pdfa
|u https://juser.fz-juelich.de/record/877452/files/MpccSingleShooting.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877452
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21