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Abstract: We consider optimization of differential-algebraic equations (DAEs) with complementarity9

constraints (CCs) of algebraic state pairs. Formulating the CCs as smoothed nonlinear complementarity10

problem (NCP) functions leads to a smooth DAE, allowing for the solution in direct shooting. We provide11

sufficient conditions for well-posedness. Thus, we can prove that with the smoothing parameter going12

to zero, the solution of the optimization problem with smoothed DAE converges to the solution of the13

original optimization problem. Four case studies demonstrate the applicability and performance of our14

approach: (i) optimal loading of an overflow weir buffer tank, (ii) batch vaporization setpoint tracking,15

(iii) operation of a tank cascade, and (iv) optimal start-up of a rectification column. The numerical16

results suggest that the presented approach scales favorably: the computational time for solution of the17

tank cascade problem scales not worse than quadratically with the number of tanks and does not scale18

with the control grid.19
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1 Introduction23

Discrete events occur in many relevant technical systems that are otherwise governed by continuous dy-24

namics. Examples include disappearance of phases in phase equilibria, controller saturation, relief valves,25

overflow weirs, or flow inversion. Such systems are typically modeled as hybrid discrete-continuous differ-26

ential algebraic equation systems (DAEs). Many of these systems can be instead modeled as nonsmooth27

DAEs, i.e., DAEs with continuous but nondifferentiable functions, cf. [1]. We focus on the optimization28

of nonsmooth DAEs, which we formulate as mathematical programs with complementarity constraints29
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(MPCC). While the simulation of nonsmooth DAEs can be performed using established methods and1

software [2, 3, 4], the optimization of these systems is more challenging.2

The formulation of the optimization problems with a nonsmooth DAE requires methods for nonsmooth3

DAE integration, sensitivity analysis, and optimization methods [5, 1]. An alternative is the formulation4

of the optimization problem as a mixed-integer dynamic optimization problem (MIDO). Avraam et al. [6]5

applied full-discretization, whereas Allgor and Barton [7] applied direct single-shooting for the solution of6

a MIDO, and Oldenburg et al. [8] formulated a mixed-logic dynamic optimization (MLDO) problem and7

solved it with direct single-shooting. Although applied to relevant problems, the formulation of state-8

dependent discrete events as MIDO or MLDO may lead to a very high number of integer or Boolean9

variables and thereby to large-scale MIDOs or MLDOs which are computationally expensive to solve.10

Kraemer and Marquardt [9] showed that the local solution of large-scale discrete-continuous optimization11

problems reformulated and solved as MPCCs performed better than the formulation and local solution as12

mixed-integer nonlinear programs. Following this observation, we formulate the optimization of systems13

with discrete events occurring in time-dependent states as MPCC. Therein, complementarity constraints14

(CCs) are used to model nonsmooth discrete events. Smoothing the CCs finally yields a smooth DAE15

which we can then optimize using standard integration and optimization methods.16

We consider dynamic optimization problems with NCC CCs involving algebraic variable pairs on a

finite time horizon T “ rt0, tf s

min
x,y,u

Φpxptf qq (1a)

s.t. M 9xptq “ fpxptq,yptq,uptqq, @t P T (1b)

0 “ gpxptq,yptq,uptqq,@t P T (1c)

0 “ hpxpt0q,ypt0qq (1d)

0 ě cpxptq,yptq,uptqq, t P T (1e)

yikptq K yi1
k
ptq, @t P T , k P t1, ..., NCCu (1f)

0 ď yikptq, yi1
k
ptq, @t P T , k P t1, ..., NCCu (1g)

with X :“ RNx ˆ RNy ˆ RNu , t0 P R the initial time, tf P R the final time, u : T Ñ RNu the control17

variables, x : T Ñ RNx and y : T Ñ RNy the differential and algebraic state variables, respectively,18

f : X Ñ RNx and g : X Ñ RNy´NCC define the right-hand-side of a DAE with the constant and non-19

singular mass matrix M P RNxˆNx , while h : X Ñ RNx indicates the initial conditions and c : X Ñ RNc20

the constraints. yik and yi1
k

are those pairs of algebraic variables appearing in the CCs (1f)-(1g) with21
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ik, i
1
k P t1, . . . , Nyu, ik ‰ i1

k. The Mayer-type objective function to be minimized is Φ : RNx Ñ R. For1

notational simplicity, we focus in the following on a single CC, i.e. NCC “ 1, and the corresponding2

sensitivity system. The theory also applies to multiple CCs and in fact the numerical examples provided3

have multiple. We use the following definition and assumptions.4

Definition 1 We define ŷ P Rny´2 as the vector of algebraic states without those states appearing in the5

CC, i.e., ŷ “ pyjqjPt1,...,Nyuzti,i1u.6

Assumption 1 The functions f and g of the DAE (1b)-(1c) are smooth , i.e., they belong to the class7

of continuously differentiable functions C1.8

Assumption 2 Bg
Brŷ,yis

ˇ

ˇ

ˇ

xpuptq,tq,ypuptq,tq,uptq
and Bg

Brŷ,yi1 s

ˇ

ˇ

ˇ

xpuptq,tq,ypuptq,tq,uptq
have full rank for all t P T .9

Assumption 2 states that the variables yi, yi1 both participate in the algebraic equations non-trivially.10

It is necessary and typically also sufficient for the solution of g with respect to either rŷ, yis or rŷ, yi1 s.11

Assumption 2 would be violated if the DAE (1b)-(1c) is high-index when rŷ, yis or rŷ, yi1 s are seen as12

the algebraic variables. The assumption is not very restrictive, as systems with higher differential indices13

can be transformed to index 1 systems.14

Optimization problems subject to DAEs can be solved, inter alia, by full discretization [10] and direct15

sequential methods [11, 12]. In full discretization, state and control variable profiles are discretized16

resulting in a large-scale nonlinear program (NLP) solved with a standard NLP solver. All constraints17

are exposed to the NLP solver. Consequently, in the case of MPCCs, the NLP solver has to handle18

the CCs. Handling the CCs (1f)-(1g) is, however, challenging for NLP solvers, since such constraints19

violate the linear independence constraint qualification (LICQ) and Mangasarian Fromowitz constraint20

qualification (MFCQ) at all feasible points, cf. [13, 14, 15, 16]. Consequently, the multipliers of MPCCs21

are nonunique and unbounded or do not even exist [17], the KKT conditions are no longer necessary for22

a local minimum of (1) [16, 17]. As a consequence, the NLP is inherently ill-posed and the MPCC (1)23

has to be reformulated to a well-posed NLP, e.g., to a relaxed NLP [14, 18]. Some NLP solvers perform24

some of these reformulations during their iterations, e.g., by dropping dependent constraints or relaxing25

constraints in the subproblems at a given iteration, cf. [19, 20, 21, 15, 22]. For other NLP solvers,26

which cannot solve these problems directly, the MPCC can be reformulated using regularization [16],27

nonlinear complementary problem (NCP) functions [23, 24, 25, 26, 27, 28], or penalty formulations, cf.28

[22, 18, 20, 29, 21, 13], thus satisfying the constraint qualifications which allows the solution as NLP.29

Several authors have solved MPCCs of the form (1) using a suitable reformulation and full discretiza-30

tion. Raghunathan and Biegler [30] used a modified interior-point method [21] for the optimal operation31
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of a distillation column. The authors used regularized CCs directly coupled to the barrier parameters of1

an interior-point algorithm. They later extended the work to dynamic optimization [31]. They used CCs2

for the appearance and disappearance of vapor-liquid equilibrium (VLE) and a weir overflow relation3

in a rectification column. They solved the dynamic optimization problem using full discretization and4

their previously developed method [21] to solve a series of regularized MPCCs. Baumrucker et al. [13]5

summarized several regularization and penalty formulations for MPCCs and concluded that the use of6

penalty formulations is beneficial in combination with an active set NLP solver. They further showed that7

penalty formulations are advantageous over the NCP formulation. In a succeeding work, they used full8

discretization with direct transcription for the optimization of hybrid dynamic systems with continuous9

state profiles over time [32].10

Using full discretization for the solution of dynamic optimization problems with CCs requires the use11

of variable step-size discretization to accurately locate the switching points. Baumrucker and Biegler12

[32, 16] showed that a fixed step-size discretization leads to inaccurate state profiles and therefore to a13

nonsmooth dependency of the optimal solution on the initial values of the degrees of freedom of the opti-14

mization. However, the necessity of variable step-size introduces additional degrees of freedom, many of15

them without significant influence on the objective, and nonconvexities to the optimization, substantially16

increasing the computational effort required [32, 16].17

These issues motivate the consideration of sequential methods for the solution of (1). Therein, the18

control variables are parameterized and passed as inputs to a DAE integrator, solving the DAE over the19

defined time horizon. The DAE integrator provides function values and gradient information to a NLP20

solver. The CCs are equality (1f) and inequality constraints (1g). The former can be given to the DAE21

integrator, whereas the latter has to be given to the NLP solver, since DAE integrators cannot directly22

handle it. As an alternative, CCs (1f)-(1g) can be equivalently formulated using NCP functions, which can23

be fully handled by the DAE integrator. The NCP functions, e.g., [28], are equality path constraints that24

are equivalent to the CCs (1f)-(1g). They may be exposed to the integrator and solved directly together25

with the DAE or can be given to the NLP solver as equality constraints [33]. As in full discretization,26

the latter requires the exact location of the switching points of the CCs by an adequate discretization.27

This favors the direct treatment of the NCP functions by the integrator. The use of variable step-size28

integration methods enables an efficient solution of the DAE together with the CCs. Thus, iterative29

optimization with changing step-size or with additional degrees of freedom and nonconvexities due to30

variable step-size, cf. [32], is not required. This makes the use of NCP functions promising for the31

solution of (1) in direct sequential methods.32
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In contrast to full discretization, the application of direct sequential methods for the solution of1

dynamic optimization problems with CCs including state variables has not yet been considered and will2

thus be investigated in this work. We study the use of direct single-shooting [11] allowing for the efficient3

solution of problems with time-variant algebraic states. Existing works focused on optimization problems4

with discrete time-invariant control variables. Stein et al. [27] studied different smooth reformulations5

for the solution of hybrid optimization problems and used direct single-shooting to optimize the feed6

stage and operation of a rectification column. However, Guo and Allison [34] considered CCs where the7

participating variables are time-invariant parameters. In that sense, this is simlar to [27]. Single-shooting8

is a standard approach for the solution of dynamic optimization problems, see e.g., [11, 16].9

NCP functions lead to nonsmooth DAEs, which require special treatment for DAE integration and10

sensitivity analysis [1, 35]. Thus, we smoothen the NCP functions to allow for the use of standard NLP11

solvers and integrators. We provide a condition for (1b) and (1c), i.e., the smooth part of the DAE,12

for which the nonsmooth DAE and the smoothed DAE are both well-posed. Note that it is difficult in13

general to show well-posedness of a nonsmooth DAE and also of a smoothed DAE [1]. We thus analyze14

the well-posedness for an illustrative example. The analysis of the nonsmooth DAE is related to the15

work of Pang et al. [36, 37] on differential variational inequalities (DVIs). They showed that DVIs are16

conceptually equivalent to the problem class we consider in this work. While they studied the problem17

class through the analysis of DVIs, they mentioned that the analysis of DVIs as nonsmooth DAEs could18

presumably benefit from the theory existing for nonsmooth DAEs. In contrast, we study the problem19

class by using the theory of nonsmooth DAEs.20

The remainder of the work is structured as follows. Section 2 starts by describing the solution21

approach we use to solve (1) using direct single-shooting and presents conditions for the well-posedness of22

the nonsmooth DAE with the Fischer-Burmeister equation, based on the structure of the DAE without23

a NCP function. Subsection 2.1.2 provides conditions for a smoothed DAE to be well-posed. We then24

propose a heuristic method to bypass suboptimal stationary points by adjusting the smoothing factor25

of the NCP function in Subsection 2.1.3. Finalizing Section 2, we discuss alternative approaches for the26

solution of (1). We present four case studies to illustrate the proposed approach, its performance, and27

the application to a large-scale process system in Section 3, and give conclusions in Section 4.28

2 Solution Strategy using Direct Shooting29

We solve the dynamic optimization problem (1) using direct single-shooting [11]; i.e., we transform (1)30

and then solve it as a NLP. The strategy is however not resticted to single-shooting and can also be31
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applied for other direct shooting approaches, e.g., direct multiple-shooting [12]. If the MPCC solution is1

strongly stationary, then an MPCC can be related to stationarity of an equivalent NLP and is, thus, the2

key assumption enabling the solution of the MPCC through NLP reformulations [22, 29, 14, 16, 17]. CCs3

(1f) - (1g) can be treated either by (I) the DAE integrator only, (II) the NLP solver, (III) or combination4

of both the integrator and the NLP solver. The following subsection describes the solution approach5

implemented (alternative I). Afterwards, we summarize alternative treatments (alternatives II and III)6

of the CCs for the solution of (1) using direct shooting.7

2.1 DAEs with Nonlinear Complementarity Problem Functions8

An NCP function, e.g., [23, 24, 25, 26, 27, 28, 38], is equivalent to the CCs (1f)-(1g) and can fully be9

treated by the integrator. In this approach, (1f)-(1g) are substituted by an equality using a NCP function.10

With full discretization, the use of NCP functions for CCs is disadvantageous [13]. On the other hand,11

with direct shooting, using an NCP function solved by the integrator benefits due to adjustable time12

steps in the integrator, in contrast to full discretization. Hence, we use NCP functions, which are solved13

by the DAE integrator, as substitute for (1f)-(1g). We use this alternative for the solution of (1) with14

direct single-shooting.15

2.1.1 Analysis of well-posedness of DAEs with non-smooth NCP functions16

NCP functions are nonsmooth and their use results in a nonsmooth DAE. In the following, we consider17

the Fischer-Burmeister NCP function [28] and show under which condition the resulting nonsmooth18

DAE including the Fischer-Burmeister NCP function is well-posed. A problem is well-posed, if existence,19

uniqueness, continuation and continuous/Lipschitz parametric dependence of the solution are satisfied,20

cf. [1]. Several works focus on the analysis and solution of nonsmooth DAEs, e.g., [39, 40, 41, 42]. We21

follow the line of argumentation by Stechlinski et al. [1] and restrict our analysis to a DAE with one22

CC. However, the analysis applies also for multiple CCs. The well-posedness analysis of the nonsmooth23

DAE uses Clarke’s Generalized Jacobian [43]. Section 2.1.2 presents the well-posedness analysis of the24

corresponding smoothed DAE.25

The Fischer-Burmeister function [28] is defined by26

ϕfbpyiptq, yi1 ptqq :“ yiptq ` yi1 ptq ´
a

pyiptqq2 ` pyi1 ptqq2. (2)

A subset of the Clarke Generalized Jacobian of (2) has been derived by Fischer [28], who used (2) for
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a Newton-type optimization method to replace the complementarity conditions of the necessary opti-

mization conditions of an NLP. Using (2) to replace (1f)-(1g) results in the following nonsmooth DAE as

equivalent to (1b)-(1c),(1f)-(1g):

M 9xptq “ fpxptq,yptq,uptqq, @t P T (3a)

0 “ gpxptq,yptq,uptqq,@t P T (3b)

0 “ ϕfbpyiptq, yi1 ptqq, @t P T (3c)

To establish non-singularity of the Jacobian we utilize a technical condition which in essence states1

that the derivatives of the algebraic constraints (3b) are linearly independent from the derivatives of the2

complementary constraint (3c) formulated using the Fischer-Burmeister function. This has to hold for3

all points for which the derivatives exist and also in the limit towards the singular point [0,0].4

Assumption 3 (i) For ryi, yi1 s ‰ r0, 0s, the rows of the Jacobian5

Bg
By pxpuptq, tq,ypuptq, tq,uptqq are linearly independent of the derivative of the Fischer-Burmeister function6

(2) Bϕfb

By pypuptq, tqq for all t P T . (ii) The rows of the Jacobian Bg
By pxpuptq, tq,ypuptq, tq,uptqq for ryi, yi1 s “7

r0, 0s are linearly independent of v : vk “ 0, @k P t1, ..., nyuzti, i1u, vi “ 1 ´ r cospφq, vi1 “ 1 ´ r sinpφq8

with 0 ď φ ă 2π, 0 ă r ď 1 for all t P T .9

Assumption 3 is not easy to validate in general. For some systems, it can be shown to be satisfied10

based on the algebraic equations g, either analytically or numerically. For other systems it can be shown11

a-posteriori along the solution trajectory in order to show the regularity of the solution. A guarantee12

that Assumption 3 is satisfied could be introduced by characterizing and finding all regions in the state13

space where Assumptions 3 is not satisfied and preventing the DAE states to lie inside these regions. We14

first state the following lemma and use it in the subsequent theorem. It shows the non-singularity of the15

Clarke Generalized Jacobian [43], which is necessary for the well-posedness of the nonsmooth DAE.16

Lemma 1 Consider the nonsmooth DAE (3). Under the Assumptions 1-3,17

Clarke’s Generalized Derivative of the algebraic equations rg, ϕs with respect to y at xpuptq, tq,ypuptq, tq,uptq18

is non-singular.19

Proof The Fischer-Burmeister function (2) is piecewise-continuously differentiable (PC1) as it is continu-20

ously differentiable everywhere except at the singleton tr0, 0su. g is smooth by Assumption 1. Thus, we21

have to show that the Clarke Generalized Jacobian is non-singular at the non-differentiable point [0,0].22

The Fischer-Burmeister function (2) is Lipschitz continuous [28]. Local Lipschitz continuity is required23

for the definition of the Clarke Generalized Jacobian [43]. The Jacobian of (3c) with respect to yi and24
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yi1 for ryi, yi1 s ‰ r0, 0s is1

Bϕfb

Byi, yi1

ˇ

ˇ

ˇ

ˇ

yi,yi1

“

«

1 ´
yi

a

pyiq2 ` pyi1 q2
, 1 ´

yi1

a

pyiq2 ` pyi1 q2

ff

. (4)

By using polar coordinates yi “ r cospφq and yi1 “ r sinpφq, r ą 0, i.e., ryi, yi1 s ‰ r0, 0s , the derivative

can be written in the following form

Bϕfb

Byi, yi1

ˇ

ˇ

ˇ

ˇ

yi“r cospφq,yi1 “r sinpφq

“ r1 ´ cospφq, 1 ´ sinpφqs

Note that for 0 ď φ ă 2π this defines the circle with center point [1,1] and radius 1. The Clarke

Generalized Jacobian Bϕfb is the convex hull of the limiting Jacobians at the non-differentiable point [43]

and can thus be written for (3c) as

Bϕfbp0, 0q “ conv

˜#

lim
ryi,yi1 sÑr0,0s

˜

Bϕfb

Byi, yi1

ˇ

ˇ

ˇ

ˇ

yi,yi1

¸

: ryi, yi1 s P R2ztr0, 0su

+¸

.

Using polar coordinates, limryi,yi1 sÑr0,0s, ryi, yi1 s ‰ r0, 0s is equivalent to limrÑ0, r ą 0. We thus have

Bϕfbp0, 0q “ conv
´!

lim
rÑ0

`“

1 ´ cospφq, 1 ´ sinpφq
‰˘

: 0 ď φ ă 2π, r ą 0
)¯

,

which converges only if φ converges. Note that the Clarke Generalized Jacobian is independent of the2

radius r. It only depends on the angle φ duo to convergence in polar coordinates. Thus, the Clarke3

Generalized Jacobian of (3c) at the non-differentiable point [0,0] is given by4

Bϕfbp0, 0q “
 “

1 ´ ρ cospφq, 1 ´ ρ sinpφq
‰

: 0 ď φ ď 2π, 0 ď ρ ď 1
(

,

i.e., the disk with center point [1,1] and radius 1. Note that r0, 0s R Bϕfbp0, 0q. The Clarke Generalized5

Jacobian of rg, ϕs with respect to the algebraic variables at ryi, yi1 s “ r0, 0s then reads6

Brg, ϕfbsT pxpuptq, tq,ypuptq, tq,uptqq “
$

’

&

’

%

»

—

–

Bg
Bŷ ,

Bg
Byi

, Bg
Byi1

0, 1 ´ ρ ¨ cospφq, 1 ´ ρ ¨ sinpφq

fi

ffi

fl

: 0 ď φ ă 2π, 0 ď ρ ď 1

,

/

.

/

-

, if ryi, yi1 s “ r0, 0s

(5)

The partial derivatives in (5) are evaluated at xpuptq, tq,ypuptq, tq,uptq. By Assumption 2, Bg
Bŷ,yi

and7

Bg
Bŷ,yi1

have full rank. Note that
”

Bg
Bŷ ,

Bg
Byi

, Bg
Byi1

ı

“
Bg
By . Due to Assumption 3, the last row of the matrices8
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in (5) cannot be expressed as a linear combination of the rows of Bg
By . Further Brg,ϕs

By is non-singular1

for ryi, yi1 s ‰ 0 due to Assumption 3. Consequently, the matrix in (5) is non-singular for all values of2

0 ď φ ă 2π, 0 ď ρ ď 1 for all t P T .3

We state the following theorem about the well-posedness of the nonsmooth DAE (3).4

Theorem 1 Under the Assumptions 1-3, the nonsmooth DAE (3) is well-posed.5

Proof The nonsmooth DAE (3) is well-posed if the Fischer-Burmeister function (3c) is PC1 in the control6

variables and state variables, and the solution is regular, i.e., the DAE (3) has a generalized differential7

index of 1 [1]. Due to Assumption 1 and the nature of (3c), all functions of (3) are PC1. (3) has8

generalized differential index of 1, if the projection of the Clarke Jacobian of the algebraic equations of9

(3) is non-singular, [1]. Non-singularity of the Clarke Jacobian of the algebraic equations is satisfied by10

the Assumptions 1-3 due to Lemma 1.11

Hence, we showed that the nonsmooth DAE is well-posed. Although this holds for the Fischer-12

Burmeister function only, it establishes for all NCP functions, due to the equivalence of the NCP functions13

and the CC (1f) and (1g). E.g., we provide the analysis of a nonsmooth DAE with the max NCP function14

of [38] in the supplementary material, which is the first NCP function formulation for the solution of NLPs15

with nonlinear complementarity constraints. We also illustrate the well-posedness for an example in the16

supplementary material.17

2.1.2 Well-Posedness of DAE with smoothed NCP Function18

We now consider a smoothed NCP function, which leads to a smooth DAE and, thus, allows the ap-19

plication of standard integrators with smooth sensitivity analysis for the optimization. In contrast, the20

optimization with a nonsmooth NCP function requires a special sensitivity analysis within direct shooting,21

as done in [35]. We use the smoothed Fischer-Burmeister function22

ϕsfbpyiptq, yi1 ptqq :“ yiptq ` yi1 ptq ´
a

pyiptqq2 ` pyi1 ptqq2 ` ε (6)

with ε ą 0. The resulting equation is equivalent to the regularized CC

yiptq ¨ yi1 ptq “ ε{2, yiptq ě 0, yi1 ptq ě 0.
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Using the smoothed Fischer-Burmeister function (6) results in following smoothed DAE

M 9xptq “ fpxptq,yptq,uptqq, @t P T (7a)

0 “ gpxptq,yptq,uptqq,@t P T (7b)

0 “ ϕsfbpyiptq, yi1 ptqq, @t P T (7c)

with appropriate initial equations. Using (6) offers slower convergence to the solution of optimization1

problem for decreasing ε as compared to other regularization formulations [18]. However, other regular-2

ization formulations would require the use of an appropriate control variable discretization to locate the3

NCP switching points, since they can not directly be solved by the DAE integrator. A comparison of4

different formulations in the context of sequential dynamic optimization is left for future work. We use5

the following assumption, which is the counterpart to Assumption 3 for the smoothed DAE (7).6

Assumption 4 The rows of the Jacobian Bg
By pxpuptq, tq,ypuptq, tq,uptqq are linearly independent of the7

derivative of the smoothed Fischer-Burmeister function (6) Bϕsfb

By pypuptq, tqq for all t P T .8

The following theorem states the well-posedness of the smoothed DAE (7) based on the results in9

Subsection 2.1.1.10

Theorem 2 Consider the DAE (7). If Assumptions 2-4 hold, the smoothed DAE (7) is well-posed.11

Proof (6) is differentiable for all yi, yi1 . The Jacobian of the algebraic equations in (7) is12

Brg, ϕsfbsT pxpuptq, tq,ypuptq, tq,uptqq “

»

—

–

Bg
Bŷ ,

Bg
Byi

, Bg
Byi1

0, 1 ´
yiptq

b

pyiptqq2`pyi1 ptqq2`ε
, 1 ´

yi1 ptq
b

pyiptqq2`pyi1 ptqq2`ε

fi

ffi

fl

(8)

The partial derivatives in (8) are evaluated at xpuptq, tq,ypuptq, tq,uptq. The Jacobian (8) is non-singular13

due to the Assumptions and the smoothed DAE (7) is well-posed.14

Thus, Assumptions 1-4 are sufficient for both the well-posedness of the nonsmooth DAE and the15

smoothed DAE. Due to the well-posedness of the nonsmooth DAE and the smoothed DAE, the solution16

of the latter converges to the solution of the first. Ralph and Wright [18] showed that the solution of17

MPCCs with the smoothed Fischer-Burmeister function substituting the complementarity constraints18

admits a convergence rate to the solution of the MPCCs of Opε1{4q. A detailed convergence analysis of19
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our approach is out of the scope of this work. It would require the convergence analysis for the solution1

of the smoothed DAE and the nonsmooth DAE.2

2.1.3 Avoiding Suboptimal Stationary Solutions3

Although the resulting smooth DAE with the smoothed NCP function can be solved using standard4

integrators and optimizers for smooth systems in direct single-shooting, the parameter ε in (6) has to5

be chosen carefully. An insensible choice for the parameter ε may lead to suboptimal stationary points.6

A too small value for the parameter may impede the NLP solver to move away from the initial guess7

provided by the user. However, a sufficiently small value for ε is required for the solution to converge8

to the solution of the nonsmooth problem, cf. [18]. Indeed, most NLP solvers converge to C-stationary9

solutions, which are suboptimal local solutions since there may be a descent direction [17]. We give10

an illustrative example in Section 3.2, where the NLP solver would converge in the first iteration to a11

suboptimal local solution, since the sensitivity of the objective with respect to the degrees of freedom of12

the NLP is small enough that the necessary optimality conditions are satisfied up to a given tolerance.13

To overcome this issue, we propose a heuristic approach that increases the smoothing parameter ε in14

(6). By also increasing the sensitivity with respect to the decision variables, convergence to the initial15

stationary point, whether a suboptimal local solution or a C-stationary point, is avoided. We illustrate16

this approach with an example in the supplementary material.17

The presence of CCs implies nonconvexities in the optimization problem and typically the presence18

of suboptimal local minima to which NLP solvers may converge. To overcome poor stationary solutions,19

Kraemer and Marquardt [9] proposed an a posteriori reassignment of discrete decision variables. Therein,20

they enforce a different switching branch by reassigning binary variables, which we do by manipulating21

the smoothing parameter ε. In the presence of several discrete decision variables, as in problems of the22

form (1), the reassignment of a single discrete variable may not significantly affect the solution or a long23

post-processing procedure would be required implying long computational times. In addition, the post24

processing as proposed by [9] requires reassigning the variables appearing in the CCs, which would require25

reinitialization of the DAE such that the solution is consistent with the inverted variables of the CCs.26

In the numerical case studies in Section 3, we show that the adjustment of the smoothing parameter of27

a smoothed NCP function already helps to overcome poor local solutions. By adjusting the smoothing28

parameter, the sensitivity of the NCP function variables can be modified without the need of solving many29

post-processing NLPs. Similar to the a posteriori procedure of [9], a sequence of optimization problems30

has to be solved consequently. The optimization problem is repeatedly solved with decreasing smoothing31
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parameter starting with a large value for the parameter ε. Thus, we iteratively reduce the parameter1

ε until it reaches the tolerance of the DAE integrator. Alternatively, the adjustment of the parameter2

ε could be directly coupled to the NLP solver, as for instance in [21]. A more rigorous approach3

would require to evaluate the convergence of the solution of the regularized DAE to the solution of the4

nonsmooth DAE with decreasing ε and stop the decrease when the convergence tolerance is below the5

integration tolerance. This would require, e.g., the generalized implicit function theorem as in [41].6

2.2 Solution Alternatives7
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Fig. 1: Illustration of possible solution approaches. Selected approaches highlighted with bold, red frames.

We now discuss the solution alternatives II and III focusing on their respective advantages and dis-8

advantages.9

2.2.1 Alternative II: Complementarity Variables as Control Variables10

When the CCs (1f) - (1g) are treated by the NLP solver, either yiptq or yi1 ptq would become a (additional)11

control variable; otherwise the solution of the DAE would not be unique due to the missing equation.12

(1f)-(1g) thus have to be satisfied by the NLP solver, resulting in several disadvantages. First, the active13

time points of the inequality path constraints (1g) have to be located exactly, cf. [16]. In addition, the14
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CCs at the NLP level violates constraint qualifications which in turn poses difficulties to the NLP solver,1

as described in the introduction.2

2.2.2 Alternative III: Complementarity Equality Constraints as Part of the DAEs3

The equality constraint (1f) can directly be solved by the integrator as an algebraic equation while the4

NLP solver is then given the constraints (1g). Although the equality constraint (1f) is satisfied by the5

DAE integrator, the active time points of the inequality path constraints (1g) have to be located exactly,6

as described in Subsection 2.2.1. Otherwise, the solution may be inaccurate [32, 16]. Although the7

location of the active points could be achieved by suitable adaptation strategies, e.g., [44, 45, 46], the8

discretization of algebraic states would likely lead to a very fine grid and additionally, in case of many9

CCs, to a large set of inputs to the DAE, so that the solution of the optimization problem becomes10

computationally more expensive. In addition, the constraints (1f)-(1g) lead either to the violation of11

the MFCQ and LICQ for any feasible point at the NLP level or an ill-posed sensitivity system at the12

integrator level.13

Let u be parameterized by p. The resulting sensitivities are sx “ Bx
Bp , sŷ “

Bŷ
Bp , syi “

Byi

Bp , syi1 “
Byi1

Bp ,

and su “ Bu
Bp . The sensitivity system of (1b)-(1c) and the complementarity equality constraint (1f) is

given by the following linear DAE, cf. e.g. [47]

M 9sxptq “
Bf

Bx

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

sxptq `
Bf

Bŷ

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

sŷptq `
Bf

Byi

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

syiptq`

Bf

Byi1

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

syi1 ptq `
Bf

Bu

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

suptq, @t P T

(9a)

0 “
Bg

Bx

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

sxptq `
Bg

Bŷ

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

sŷptq `
Bg

Byi

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

syiptq

`
Bg

Byi1

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

syi1 ptq `
Bg

Bu

ˇ

ˇ

ˇ

ˇ

xptq,yptq,uptq

suptq, @t P T

(9b)

0 “ yiptqs
yi1 ptq ` yi1 ptqsyiptq, @t P T , (9c)

with appropriate initial equations.14

There are two scenarios possible: If yi “ yi1 “ 0, then (9) does not define all sensitivities. Rather, (9c)15

is trivially satisfied and just one variable would be defined by the algebraic equations (9b). Consequently,16

(9) is not well-posed, i.e., there is no unique solution of (9). The ill-posedness of the sensitivity systems, in17

turn, causes non-uniqueness of the Lagrange multipliers at the NLP level, which is equivalent to violation18

of the LICQ.19

On the other hand, if yi “ 0 ^ yi1 ‰ 0, then by (9c) syi “ 0. Thus, syi1 can be calculated by (9b) and20
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(9) is well-posed, given Assumption 2. However, LICQ and MFCQ are violated since the gradient of the1

active inequality constraint (yi “ 0) with respect to the degrees of freedom of the NLP is zero ( syi “ 0).2

The case yi ‰ 0 ^ yi1 “ 0 is analogous.3

Consequently, alternative III is problematic.4

Note that we could also use a NCP function to be solved by the NLP solver in the alternatives II and5

III. However, this would not overcome the issues discussed earlier. Further performed preliminary testing6

with alternatives II and III revealed substantial numerical difficulties. Hence, we use NCP functions,7

which are solved by the DAE integrator, as substitute for (1f)-(1g) (alternative I). We use this alternative8

for the solution of (1) with direct single-shooting. Fig. 1 illustrates the possible solution approaches for9

the solution of (1) and the approach we use. A detailed comparison of the solution alternatives I - III10

would be interesting, however, is out of the scope of this work.11

3 Illustrative Examples12

We investigate four numerical case-studies. All cases use the smoothed Fischer-Burmeister function (6),13

treated directly in the integrator by using direct single-shooting. The optimization problems are solved14

in the optimization framework DyOS [48] using direct single-shooting with wavelet adaptation [44]. The15

initial grid for the control variable profiles consists of a single interval. We use the NLP solver SNOPT [49]16

and the DAE integrator NIXE [50]. The models are implemented in Modelica and exported into DyOS as17

Functional Mockup Unit. The DAE integration tolerances are 10´8 and NLP feasibility and optimality18

tolerances are 10´6. All computations are performed on a Microsoft Windows 7 desktop computer with19

an Intel(R) Core(TM) i3-6100 CPU running at 3.70 GHz and 8 GB RAM.20

3.1 Overflow Weir Buffer Tank21

Our first case-study addresses the optimal loading of an overflow weir buffer. The buffer tank has one22

feed and one outlet stream, which becomes active when the tank holdup exceeds a threshold (Fig. 2). A23

model of the buffer tank is provided in the supplementary material. There, we show that Assumptions24

2-3 are satisfied and the nonsmooth DAE of the buffer tank is well-posed. Indeed, the determinant of25

the projection of the Clarke Jacobian of the algebraic equations with respect to the algebraic variables26

(provided in the supplementary material) is always nonzero, which further proves that it is nonsingular.27

Thus, the nonsmooth and smoothed versions of the buffer tank example are well-posed.28
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Fig. 2: Buffer tank with overflow weir. Mode 1, holdup less than minimum holdup. Mode 2, holdup
higher than minimum holdup. The outlet stream Fout becomes active when the tank holdup m exceeds
the minimum holdup mmin. m´ and m` denote the negative and positive deviations of m from mmin.

3.1.1 Dynamic Optimization1
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Fig. 3: Optimization results of overflow weir buffer tank problem. (a) tank holdup. (b) feed flowrate and
objective function.

The optimization problem formulation is given in the supplementary material. We want to control

the feed stream F , so that the difference of the holdup m and a specified holdup setpoint mset “ 120 mol

is minimized, i.e.

min
F

ż tf

0

`

mptq ´ mset˘2 dt

The minimum holdup activating the overflow is mmin “ 60 mol. For the optimal solution, we expect2

F to be at the upper bound until the desired buffer tank level is reached and then set equal to the outlet.3

The DAE describing the buffer tank has 1 differential eqatuion and 3 algebraic equations. The only4

constraints for the NLP are the bounds on F .5
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The results of the dynamic optimization are shown in Fig. 3. The tank holdup reaches the desired1

setpoint at about 15 s (Fig. 3a). The holdup starts at 0 mol and increases linearly until it reaches 60 mol.2

From then on, the holdup increases sub-linearly, due to the tank outlet flow. The profiles for m´ and3

m` reflect the holdup profile. The control variable profile, i.e., the tank feed rate is at the upper bound4

until the tank holdup reaches its setpoint (Fig. 3b). From then on it stays at 6 mol/s to keep the tank5

holdup at the desired setpoint. The solution approach successfully locates the switching points for the6

discrete events, since the results of the dynamic optimization are as expected. We can thus conclude the7

validity of the approach. A detailed validation of the control variable profile would require the solution8

of the optimization problems with the original nonsmooth DAE, as, e.g., in [35], or the formulation and9

solution as a corresponding DVI, which is, however, out of the scopt of this work.10

3.2 Optimal Batch Vaporization11
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Fig. 4: Optimization results of the batch vaporization problem for different constant values for ε, ie.,
without adaptation of ε. (a) Heat stream control variable. (b) Vapor fraction. (c) Temperature.
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Fig. 5: Optimization results of the batch vaporization problem. (a) Heat stream control variable. (b)
Vapor fraction. (c) Temperature.

This case study addresses an optimal batch vaporization case-study using the relaxed VLE formu-

lation as presented by Raghunathan and Biegler [31], but using a nonideal thermodynamic mixture.
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Nevertheless, we can use the relaxed phase equilibrium equations for the VLE. Note the limitations of

the formulation for liquid-liquid equilibrium [51]. The nonsmooth DAE with the relaxed VLE formu-

lation and the Fischer-Burmeister function is not generally well-posed, as shown in the supplementary

material. However, generalized differential index 1 is a local characteristic along a solution trajectory, and

therefore the system is not generally required to be of index 1 for well-posedness of the DAE [41]. Thus,

we use the smoothed Fischer-Burmeister function for optimization and hope the smoothed DAE to be

well-posed along the solution trajectory. This case study illustrates the existence of undesired stationary

points caused by the NCP function, which makes SNOPT to converge immediately at the first iteration

to the initial values. The aim of the optimization is to control the vapor fraction χ to be at χset “ 0.5

by adjusting the heat transfer rate 9Q accordingly, and minimize

ż tf

0

`

χptq ´ χset˘2 dt.

The problem definition is provided in the supplementary material. The complete DAE of the boiler1

consists of one differential and 39 algebraic equations. The only constraints for the NLP are the bounds2

on Qin.3

The initial condition for the enthalpy corresponds to subcooled liquid. First, we present optimization4

results with different constant values of ε, i.e., without adaptive ε. Each optimization uses 9Qptq “ 05

as initial guess. Afterwards, we compare the results with and without the adaptive strategy for the6

smoothing parameter ε.7

Fig. 4 shows the optimization results with constant values of ε. Both the control and state variable8

profiles change with changing values of ε. In addition, the control variable profile stays constant at the9

initial guess profile for ε “ 10´8. This is a suboptimal stationary solution and a motivation for the10

adaptation strategy for ε as described in Section 2.1.3. If ε is increased, the control variable profile11

changes to the intuitively optimal solution (Fig. 4a). The state variables differ for different values of12

ε, although the control variable profiles are identical. The initial value for the temperature (Fig. 4c)13

changes with changing values of ε in order to meet the initial condition for the enthalpy.14

In addition, we performed the optimizations with different DAE integrators and NLP solvers, using15

IDAS [52] and S-LIMEX [53] as additional integrators and IPOPT [54] as additional NLP solver. The16

results obtained using SNOPT and the three different DAE integrators are identical, as presented above.17

However, the resuts are different if IPOPT is used as NLP solver. For ε “ 10´8, IPOPT converges to the18

optimal solution and does not furnish the initial guess as solution. Thus, the adaptive strategy for ε would19

not be required in this case. However, this cannot be known a priori and may be very problem specific.20
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Thus, the adaptive strategy is usefull as a heuristic approach and adds a certain degree of assurance to1

prevent the NLP solver from converging to a suboptimal stationary solution.2

We show two optimization results obtained with SNOPT to demonstrate the usefulness of the adaptive3

strategy for ε as described in Section 2.1.3: one optimization performed using the fixed value for ε “ 10´8
4

and one optimization performed repeatedly using decreasing values for ε starting with ε “ 1 until ε “ 10´8
5

with an increment factor of 10. The heat transfer rate 9Q is initialized with piecewise constant control6

profiles consisting of one single element with the value of 9Qptq “ 0. Each optimization is initialized with7

the solution of the previous optimization. The sensitivity of the objective function for the initial guess8

is ´0.037 for ε “ 1 and ´1.8 ¨ 10´9 for ε “ 1 ¨ 10´8, so that the sensitivity is larger than the optimality9

tolerance for the first value and smaller for the latter. There is, hence, a descent direction for ε “ 1 and10

the NLP solver moves away from the initial solution.11

The adaptive single-shooting algorithm is executed until convergence for each value of ε using the12

solution of the previous execution as initial guess for the next execution. The results of the optimizations13

are shown in the Figure 5.14

The profiles obtained from the two optimization approaches are substantially different. While the15

heating profile (Fig. 5a) remains at the initial guess profile for the constant value of the parameter16

ε, the intuitive solution is obtained for the adaptive approach. The initial solution appears to be a17

suboptimal stationary point, cf. Section 2.1.3; the vapor fraction is zero for the initial iteration, such18

that its sensitivity is zero and with it the gradient of the objective function. The initial solution is not a19

C-stationary point, since all NLP Lagrange multipliers of the CCs are greater than or equal to zero and at20

least one multiplier would have to be negative in case of a C-stationary solution [17]. The value ε “ 10´8
21

of the non-adaptive approach leads to a too small sensitivity of the vapor fraction and SNOPT converges22

directly to the initial guess. The heat is used to increase the temperature of the sub-cooled liquid during23

the first 20 min (Fig. 5c). Then, the vaporization starts and the vapor fraction increases. The desired24

vapor fraction is obtained by the adaptive strategy after one hour (Fig. 5b). The heat transfer rate is25

then decreased to zero to keep the vapor fraction constant.26

We conclude that the adaptive optimization approach is able to move the solution away from the27

initial suboptimal stationary point, caused by a small initial sensitivity of the objective function. The28

first solution (ε non-adaptive in Fig. 5b) leads to an objective function value of 1800, whereas the solution29

with the adaptation of ε leads to an objective function of 470.30
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Fig. 6: Flowsheet of cascade tank problem for 3 tanks.

3.3 Tank Cascade Problem1

This case study is the cascading tank problem presented in [32, 16]. The discrete behavior results from

valves behind each tank preventing a flow inversion and from the hydraulic correlation used to calculate

the outlet stream. We compute the optimal control trajectory of the valve position of a series of cascading

tanks as shown in Figure 6. The formulation of the optimization problem is provided in the supplementary

material. We want to minimize the deviation of the tank holdups Li from a setpoint of Lsp “ 4 of a time

horizon of tf “ 100 s by controlling the feed flowrate to the first tank F0, and the valve positions w1, w2,

and w3., i.e., we minimize
ż tf

0

ÿ

iPt1,...,Ntanku

pLiptq ´ Lset
i q2dt.

The only constraints of the NLP are the bounds on F0 and on w1, w2, and w3. The results of the dynamic2

optimization with three tanks and an adaptive control variable discretization starting with one element3

are shown in Fig. 7. The first tank is filled at the beginning and the inlet stream is then set to zero (Fig.4

7a). The valves are opened at the beginning and reduced until the end (Fig. 7a). The control profiles5

let the tank holdups achieve approximately their desired setpoints (Fig. 7b). The state variable profiles6

look similar to the optimization results of [32].7

The problem was optimized in [55] using a mixed-integer approach. We compare the computational8

scaling with the results reported in [55, 32, 16] and investigate the influence of the number of tanks and9

the number of control variable intervals of the control variable discretization on the solution time.10

In this case study, the solution times and NLP solver iterations for the optimizations using increasing11
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Fig. 7: Control and state variable profiles of tank cascade optimization with 3 tanks and control grid
adaptation. (a) Control variables. (b) Tank levels.
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Fig. 8: Solution times and number of iterations for the optimization of the tank cascade problem. (a)
Solution times and number of iterations of NLP solver for increasing number of tanks and a discretization
with 10 time intervals. (b) Solution times and number of iterations of NLP solver for increasing number
of time intervals and 3 tanks.
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number of tanks and time intervals are given in Figure 8. The solution times and NLP solver iterations1

grow quadratically with number of tanks, which is similar to the performance obtained in [32]. This2

admits a better time scaling than the solution in [55], which was reported to scale between quadratically3

and exponentially (Fig. 8). It is remarkable that both the solution times and the number of iterations4

increase, indicating that the NLP becomes computationally more challenging to solve. Here, not only5

the DAE integration becomes more challanging but also the solution of the NLP. The solution times and6

NLP solver iterations grow linearly with increasing number of intervals (Fig. 8), which corresponds to a7

better time scaling than reported in [32], where a linear to quadratic scaling was resported. The linear8

dependency between the solution times and the number of intervals is a main advantage of the proposed9

direct shooting based approach, as the adaptive integration grid of the DAE integrator is independent10

of the number of intervals of the control variables. On the other hand, DAE integration becomes more11

demanding only due to the larger sensitivity DAE, but not due to an increased number of time intervals.12

The step-size of the integrator is changed due to error control and not due to the number of time intervals13

of the control variable discretization.14

3.4 Rectification Column Start-Up15

𝜉
ሶ𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑥𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑁2

ሶ𝑛𝑓𝑒𝑒𝑑

1

20

Fig. 9: Flowsheet of rectification column.

The last case study is the optimization of a start-up procedure for a rectification column. We use the

rectification column model formulation of Raghunathan and Biegler [31], which also includes the overflow

weir formulation presented in Section 3.1. In contrast to [31], we focus on a cryogenic rectification column

for the separation of nitrogen, oxygen, and argon, and do not assume ideal thermodynamic behavior.

The considered rectification column configuration comprises a column and a total condenser, as shown

in Figure 9. This column is motivated by cryogenic air separation unit, see, e.g., [56]. The rectification
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Fig. 10: Selected control and state variable profiles of rectification column optimization. (a) Split factor.
(b) Feed flow rate. (c) N2 Product purity, setpoint dashed. (d) Product flow rate, setpoint dashed. (e)
Liquid holdups on trays. (f) Pressures on trays.

column consists of 20 equilibrium trays. During start-up, each tray may contain a liquid phase, a vapor

phase, or a VLE. The model equations are given in the supplementary material. The model comprises

81 differential states, i.e., the molar holdups and the energy on the equilibrium trays, and 1665 algebraic

variables. Each tray includes two CCs, one for the overflow weir and one for the VLE detection. Solving

the problem with a MIDO approach would require at least 40 time-dependent binary variables for the

different modes and trays leading to a large number of binary variables after discretization. We want

to minimize the integral of the squared deviations of the product stream and product purity from their

setpoints over a time horizon of one hour. Hence, we minimize

ż tf

0

wnp 9nproductptq ´ 9nset
productq2 ` wxpxN2

productptq ´ xN2,set
productq2dt

where 9nproduct is the product flow rate and 9nset
product the corresponding setpoint, xN2

product is the product1

purity and xN2,set
product the corresponding setpoint, wn and wx are weighting parameters. We weight the two2

parts of the objective function to lie in the same order of magnitude using wn “ 1 and wx “ 1000. The3

target setpoints are 9nset
product “ 50 mol/s and xN2,set

product “ 0.995. The initial profiles are time-invariant,4

with 9n0
feedptq “ 80 mol/s and ξ0ptq “ 0.0 and the bounds 9nfeedptq P r80, 120s mol/s, ξptq P r0.0, 0.8s. The5

column is initialized with the steady-state corresponding to these initial control variable values, i.e., with6
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vapor at the dew point on every stage. We apply the adaptive smoothing parameter of the Fischer-1

Burmeister function starting at ε “ 1 and reduce the parameter by the factor 10 at each iteration until2

ε “ 10´8, using adaptive single-shooting in each iteration with the respective parameter value.3

The results of the dynamic optimization are given in the Fig. 10. The start-up takes about 2400 s.4

The split factor is increased in order to provide the column with a higher reflux at the beginning (10a).5

The feed flow rate is at its upper bound in the beginning and at the lower bound in the end (Fig.10b).6

The control variables have a fine discretization where needed and a coarse discretization otherwise. The7

controls make the product stream and product purity reach their desired setpoints (Fig. 10d and 10c).8

The VLE establishes in the column, beginning from the first tray and propagating down the column.9

This corresponds to the liquid holdups on the trays, with steep initial increases for trays 1, 10 and 2010

(Fig. 10e). The pressures of the lower trays increase first due to increase of the liquid holdup in the11

upper trays (Fig. 10f). The pressure of a tray quickly decreases when a VLE exists since then a part of12

the hold up is present in the liquid phase with a higher density and the vapor holdup is decreased (Fig.13

10f).14

The case study shows that our approach can be used for the optimization of a large-scale dynamic15

system.16

4 Conclusions17

We consider optimization problems with smooth differential algebraic equations and CCs of algebraic18

state pairs. We solve the optimization problems applying direct single-shooting. The DAE integrator19

directly solves the CCs using NCP functions as model equations. To facilitate the dynamic optimization20

of the resulting nonsmooth DAE, we use a smoothed NCP function resulting in a smooth DAE, which21

allows for the application of standard DAE integrators and NLP solvers. We analyze both the nonsmooth22

DAE and the DAE with the smoothed NCP function and give conditions for the well-posedness of the23

systems. The generalized index 1 property of the nonsmooth DAE implies the well-posedness of the DAE24

with the smoothed NCP function. We use a smoothed Fischer-Burmeister NCP function for the solution25

of the optimization problems with CCs. Other smoothed NCP functions could be used as well.26

However, the formulation with CCs may contain suboptimal solutions that are not local minima of the27

MPCC (e.g., C-stationary points with a descent direction). Therefore, we propose a heuristic approach.28

This prevents the NLP solver from converging to suboptimal stationary points by adjusting the smoothing29

parameter of the NCP function. Increasing the smoothing parameter, the sensitivities with respect to the30

NLP degrees of freedom can be increased and thus enable the NLP solver to move away from suboptimal31
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stationary points. The optimization problem is repeatedly solved with decreasing smoothing parameter.1

The presented four numerical case studies range from simple illustrative examples to a large-scale2

optimization of a rectification column. In a tank cascade example, the method scales quadratically with3

increasing system size and linearly with increasing number of control variable intervals. We consider the4

approach to be particularly beneficial for large-scale problems including many discrete events, where a5

large number of binary or integer control variables would be required when formulated as MIDO problem.6

The solution of the optimization problems with direct sequential methods using CC reformulations7

different from the Fischer-Burmeister function is left for future work, as well as the comparison of the8

presented approach with the alternative solution approaches (i) and (ii) as described in Section 2. In9

addition, the comparison with methods for the optimization of nonsmooth DAEs, the application of10

methods for global dynamic optimization, and the application of the present approach to model predictive11

control or more complex examples are considered promising research directions. While the convergence12

of NLPs with CCs formulated using the Fischer-Burmeister function is known [18], the convergence of13

solution of the DAE with the smoothed Fischer-Burmeister function to the solution of the DAE with14

the original Fischer-Burmeister function is also an interesting topic for future work. Furthermore, the15

comparison of the optimization with a smoothed DAE and the optimization with the original nonsmooth16

DAE, as in [35], is a relevant field for future research.17
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