000877453 001__ 877453
000877453 005__ 20240709081909.0
000877453 0247_ $$2doi$$a10.1016/j.jprocont.2020.05.008
000877453 0247_ $$2ISSN$$a0959-1524
000877453 0247_ $$2ISSN$$a1873-2771
000877453 0247_ $$2Handle$$a2128/25027
000877453 0247_ $$2WOS$$aWOS:000543364100005
000877453 037__ $$aFZJ-2020-02206
000877453 082__ $$a004
000877453 1001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b0
000877453 245__ $$aThe integration of scheduling and control: Top-down vs. bottom-up
000877453 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877453 3367_ $$2DRIVER$$aarticle
000877453 3367_ $$2DataCite$$aOutput Types/Journal article
000877453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591625605_14893
000877453 3367_ $$2BibTeX$$aARTICLE
000877453 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877453 3367_ $$00$$2EndNote$$aJournal Article
000877453 520__ $$aThe flexible operation of continuous processes often requires the integration of scheduling and control. This can be achieved by top-down or bottom-up approaches. We compare the two paradigms in-silico using an air separation unit as a benchmark process. To demonstrate the top-down paradigm, we identify data-driven models of the closed-loop process dynamics based on a mechanistic model and use them in scheduling calculations that are performed offline. The resulting target trajectories are passed to a linear model predictive control (LMPC) system and implemented in the process. To demonstrate the bottom-up paradigm, we define an economic nonlinear model predictive control (eNMPC) scheme, which performs dynamic optimization using the full model in closed-loop to directly obtain the control variable profiles to be implemented in the process. We provide implementations of the process model equations as both a gPROMS and a Modelica model to encourage future comparison of approaches for flexible operation, process control, and/or handling disturbances. The performance, advantages, and disadvantages of the two strategies are analyzed using demand-response scenarios with varying levels of fluctuations in electricity prices, as well as considering the cases of known, instantaneous, and completely unknown load changes. The similarities and differences of the two approaches as relevant to flexible operation of continuous processes are discussed. Integrated scheduling and control leverages existing infrastructure and can be immediately applied to real operation tasks. Both operation strategies achieve successful process operation with remarkable economic improvements (up to 8%) compared to constant operation. eNMPC requires more computational resources, and is – at the moment – not implementable in real-time due to maximum optimization times exceeding the controller sampling time. However, eNMPC achieves up to 2.5 times higher operating cost savings compared to the top-down approach, owing in part to the more accurate modeling of key process dynamics.
000877453 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877453 588__ $$aDataset connected to CrossRef
000877453 7001_ $$0P:(DE-HGF)0$$aTsay, Calvin$$b1
000877453 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b2
000877453 7001_ $$0P:(DE-HGF)0$$aBaldea, Michael$$b3$$eCorresponding author
000877453 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$eCorresponding author
000877453 773__ $$0PERI:(DE-600)2000438-2$$a10.1016/j.jprocont.2020.05.008$$gVol. 91, p. 50 - 62$$p50 - 62$$tJournal of process control$$v91$$x0959-1524$$y2020
000877453 8564_ $$uhttps://juser.fz-juelich.de/record/877453/files/main.pdf$$yPublished on 2020-05-27. Available in OpenAccess from 2022-05-27.
000877453 8564_ $$uhttps://juser.fz-juelich.de/record/877453/files/main.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-27. Available in OpenAccess from 2022-05-27.
000877453 909CO $$ooai:juser.fz-juelich.de:877453$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877453 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877453 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000877453 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000877453 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877453 9141_ $$y2020
000877453 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877453 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PROCESS CONTR : 2018$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000877453 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877453 920__ $$lyes
000877453 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877453 9801_ $$aFullTexts
000877453 980__ $$ajournal
000877453 980__ $$aVDB
000877453 980__ $$aUNRESTRICTED
000877453 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877453 981__ $$aI:(DE-Juel1)ICE-1-20170217