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Abstract: The flexible operation of continuous processes often requires the integration of scheduling and
control. This can be achieved by top-down or bottom-up approaches. We compare the two paradigms
in-silico using an air separation unit as a benchmark process. To demonstrate the top-down paradigm,
we identify data-driven models of the closed-loop process dynamics based on a mechanistic model and use
them in scheduling calculations that are performed offline. The resulting target trajectories are passed
to a linear model predictive control (LMPC) system and implemented in the process. To demonstrate
the bottom-up paradigm, we define an economic nonlinear model predictive control (eNMPC) scheme,
which performs dynamic optimization using the full model in closed-loop to directly obtain the control
variable profiles to be implemented in the process. We provide implementations of the process model
equations as both a gPROMS and a Modelica model to encourage future comparison of approaches for
flexible operation, process control, and/or handling disturbances. The performance, advantages, and
disadvantages of the two strategies are analyzed using demand-response scenarios with varying levels of
fluctuations in electricity prices, as well as considering the cases of known, instantaneous, and completely
unknown load changes. The similarities and differences of the two approaches as relevant to flexible
operation of continuous processes are discussed. Integrated scheduling and control leverages existing
infrastructure, can be immediately applied to real operation tasks. Both operation strategies achieve
successful process operation with remarkable economic improvements (up to 8%) compared to constant
operation. eNMPC requires more computational resources, and is—at the moment—mnot implementable in
real-time due to maximum optimization times exceeding the controller sampling time. However, eNMPC
achieves up to 2.5 times higher operating cost savings compared to the top-down approach, owing in part

to the more accurate modeling of key process dynamics.
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1 Introduction

The flexible operation of continuous processes has potential economic and environmental benefits, e.g.,
from the implications of variable electricity prices that reflect, among others, the contribution of renewable
energy sources to the power generation mix [1]. However, flexible operation is a difficult task, since
decisions must be made over multiple time horizons. For example, electricity prices, which are highly
relevant to process economics and production scheduling, fluctuate on a time scale of hours (weekly and
seasonal variations are also present). On the other hand, process dynamics and control decisions evolve
on time scales of seconds, minutes, and even hours. Thus, decisions must consider the time horizon(s)
of both production scheduling and process dynamics and control. The flexible operation of continuous
processes lies at the core of these interrelated operation tasks, i.e., at the nexus of scheduling and control
[2, 3].

Methods for integrated decision-making across several time scales in chemical processes have been
discussed in several recent review and perspective articles [2, 4, 5, 6, 7]. Approaches for flexible operation
can broadly be categorized into two paradigms [2]: top-down and bottom-up. The former aims to include
detailed process information (e.g., process dynamics and control) in calculations in the scheduling layer,
while the latter seeks to consider the upper-level objective (e.g., process economics) in the process control
layer.

The top-down paradigm takes into consideration the traditional hierarchical separation of operational
decisions by relevant time scales [8]. The production schedules resulting from top-down calculations are
presented in the form of setpoints/targets to be implemented on the process by a (typically multivariable,
advanced) tracking controller, which calculates the profiles of the manipulated variables (MVs) and
passes them either to the process directly or via subordinate base-layer (regulatory) controllers. These
setpoint /target calculations have been addressed in the past using, e.g., real-time optimization (RTO)
[9], and its extension using dynamic process models, dynamic real-time optimization (DRTO) [10]. While
classical DRTO approaches, e.g., [10], consider the open-loop dynamics of a process, recent works [11, 12]
propose embedding closed-loop process dynamics, or the dynamics of the process subject to lower-level
controllers from the perspective of the DRTO layer, in setpoint calculations. This closed-loop DRTO
(CL-DRTO) strategy requires an optimization problem formulation or model that is able to represent the
closed-loop dynamics of the process, often including model predictive control (MPC) and/or regulatory
control.

Jamaludin and Swartz [11] formulated the CL-DRTO problem as a bilevel problem, where the lower-

level represents the embedded MPC optimization problem. Although the lower-level optimization problem
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might be nonconvex in general, it is substituted by its first-order necessary optimality conditions using
complementarity constraints to obtain a single-level problem. Later, Jamaludin and Swartz presented
and analyzed multiple approaches to approximate closed-loop behavior to be used in a CL-DRTO formu-
lation, assuming a subordinate linear model predictive control (LMPC) approach for setpoint tracking
[12]. They showed that CL-DRTO outperforms DRTO and that the proposed formulations can suc-
cessfully approximate the closed-loop behavior obtained from the rigorous approach. Depending on the
formulation, they could substantially reduce computational requirements, while still retaining optimal
closed-loop behavior. Li and Swartz [13, 14] extended the methods for distributed systems.

The same concept of embedding closed-loop process dynamics can be applied to production scheduling
calculations, which typically involve longer time horizons than those considered in RTO. Simkoff and
Baldea [15] embedded the optimality conditions of the tracking MPC problem (using complementarity
constraints) in a dynamic optimization problem over a longer, scheduling time horizon. While [11, 12, 15]
use an optimization problem formulation based on a detailed, first-principles model for flexible operation
(via RTO or scheduling), several data-driven approaches have been proposed to embed information about
process dynamics in production scheduling [5]. For example, Pattison et al. [16, 17, 18] identified data-
driven dynamic surrogate models based on process closed-loop data to represent the dynamic behavior
of the closed-loop system. The data-driven model representing the closed-loop behavior, termed a scale-
bridging model (SBM), was then used in production scheduling calculations. The resulting vector of
time-varying operating set-points was passed to a lower-level tracking controller to be implemented on
the process.

In contrast to the top-down approaches, the bottom-up paradigm seeks to incorporate economic
considerations into the process control system. This can be done either at the level of a subordinated
distributed regulatory control system, cf., [19, 20, 21], or at the level of a supervisory controller, e.g., by
economic nonlinear model predictive control (eNMPC) [22, 23, 24]. Here, eNMPC is used directly for
feedback control and does not imply a hierarchical control structure with a subordinate tracking control
scheme as in the above top-down paradigm [24]. Rather, eNMPC integrates the scheduling and control
task by considering the scheduling targets at the controller level directly. In that sense, scheduling is an
extension of the original eNMPC idea. Specifically, a dynamic optimization problem with an economic
objective is solved with a sufficiently long time horizon, subject to an open-loop process model or the model
including base-layer/regulatory controllers. Following this paradigm, a subordinated advanced tracking
controller is not required; rather, the eNMPC is responsible for both maximizing economic performance

and directly controlling the process. Recent works focused both on the theoretical properties, e.g.,
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[25, 26], and on applications [27, 28, 29, 30] of eNMPC. Since eNMPC is computationally demanding, its
application to large-scale processes requires numerically efficient approaches, such as fast-update methods
[31, 32, 28, 29], hierarchical control structures [33], and/or model reduction techniques [34, 35, 36].

Both paradigms described above seek to integrate scheduling and control, but the question of whether
a top-down or a bottom-up approach is more suitable for a specific process operation task has not been
fully explored in the open literature [2]. Therefore, in this work, we compare two approaches represen-
tative of the top-down and bottom-up paradigms: i) scheduling with data-driven, closed-loop dynamic
models (SBMs [16]) and subordinate tracking LMPC, and ii) economic nonlinear model predictive control
(eNMPC). The two strategies, illustrated in Fig. 1, are applied in silico to a prototype air separation
unit (ASU). Specifically, we employ the ASU model by Johansson [37] as a benchmark process for flexible
process operation, and consider several representative demand-response scenarios.

Along the lines of [2], we propose the ASU model as a benchmark for the study of the integration
of scheduling and control. ASUs are interesting case studies for the application of operating schemes
and have been considered in numerous publications [38, 28, 27, 29, 30, 17]. They are electricity-intensive
processes that accounted for 2.2% of the electricity consumption of the manufacturing industry in the
US in 2014 [39]. In addition, ASUs are large-scale, multiple-input-multiple-output (MIMO) processes
that include several standard process units, i.e., distillation columns, (multi-stream) heat exchangers,
compressors, and turbines. They feature tight material and energy integration and have complex nonlinear
dynamics that span multiple time scales. Furthermore, the process includes only physical effects that are
well understood and can be represented using standard models.

To encourage comparisons of future methods using the proposed benchmark process, the model is
implemented identically in both gPROMS [40] and Modelica [41]. Both models are made openly available
online [42] at https://data.mendeley.com/datasets/pfccbgvzty and can be used, e.g., to test methods
for flexible operation, including scheduling techniques, (hierarchical) control systems, and methods for
identifying and handling disturbances.

The remainder of the work is structured as follows: the two process operating strategies are first
explained in Section 2. We then describe the benchmark ASU process and model implementations in
Section 3 and show the comparison results in Section 4. Finally, Section 5 provides some concluding

remarks.
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Fig. 1: Operating schemes for integrated scheduling and control. (a) top-down: SBM-based scheduling
(SBMBS). A data-driven model (SBM) is used to predict the dynamic closed-loop behavior of the pro-
cess under subordinate LMPC (and regulatory) control. The setpoints are passed to the LMPC which
calculates the profiles of the manipulated variables based on a linear process model. The manipulated
variable profiles are then implemented in the process directly or as setpoints for regulatory (e.g., PID)
control. (b) bottom-up: eNMPC. The eNMPC solves a nonlinear dynamic optimization problem subject
to a dynamic open-loop process model and other operational constraints. The resulting MV profiles are
implemented in the process directly or as setpoints for regulatory control.

2 Methods

We describe the top-down approach considered in Section 2.1 and the bottom-up approach in Section

2.2.

2.1 Top-Down: SBMBS

The top-down (i.e., integrated scheduling and control) problem embeds dynamic information about the
process and its control system into the production scheduling problem, in order to obtain dynamically
feasible schedules [6]. The objective of the integrated problem is to determine the production setpoints
to the process control system that maximize economic performance. A lower-level control system, e.g.,

LMPC, determines the optimal values of the manipulated variables to best guide the process to the
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scheduled set points. The deterministic integrated scheduling and control problem can be stated as:

min _®(x(tsched))
Yoo T Y, U

st. Ma(t) = f(x(t), y(t),u(t),p(t)) Vte T?
0 = g(x(t),y(t), u(t),p(t)) Vte T*
u(t) = a;,t € [ti—1,t;) (1)
U =P(Ti—1, Ygpi—1)
x(to) = Zo

0

A\

c(x(t),y(t),u(t),pt)),teT*

where  : 7° — RY= are the differential states, y : 7° — RNv are the algebraic states, u : 75 — R™= are
the MVs, p : 7% — R¥» are the parameters, f : X — R¥+, g : X — R define the open-loop process
model, given as a semi-explicit differential-algebraic equation system (DAE) with differential index 1,
X = RNe x RNy x RNe x RNe| T% = [tg,t], and ¢ : X — RNv are path and terminal constraints.
M e RNe*Na g the nonsingular mass matrix, ys,(t) is the trajectory of set points and/or production
targets, and ® is an economic objective function. The problem is solved over a scheduling time horizon,
tsched = tf — to, which is typically much longer than the dominant time constant of the process.

In effect, the optimization problem (1) determines the trajectory of yg,(¢) that minimizes ®, while
the evolution of the process states,  and y, is predicted by the process model given values for the MVs
and parameters, respectively, © and p. The MVs u are discretized using constant-length time slots, and
their values in time slot i are denoted as @;,V ¢ € [t;—1,t;). &; and Ysp,; similarly denote the values of
x and y,, in each time slot 4. 4, are computed from the control law 1)(o), written in (1) as an explicit
control law for simplicity. However, in this work we consider an (optimization-based) lower-level LMPC

problem, which takes the following form:

N1

. -2 . 2 . _ 2

Join 5 Z <|yk - ysp,k}Q + |ay, — “sp7k|R> +Un — Y n Py
’ k=i

sit. @iy = A@y + Bag Yk e {i,.,i+ N — 1}
), = Ctp Yk € (i, i+ N — 1} )
Ty = Tinitial
y'P <, <yUPVke{i,..i+ N—1}

utB <ap <uYBVke{i,.,i+ N1}
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where A € RN=*Nz ig the state transition matrix, B € RN=*Nu is the input matrix, and C € RNv*N=
is the output matrix. The values in the matrices A, B, and C are the parameters of the linear state-
space model and can be identified from process data (usually through open-loop system identification
experiments), or from simulations of an available dynamic model. The LMPC problem (2) determines
the values of the MVs, u, that minimize deviations of y from setpoints y,, while also penalizing changes
in w. The process behavior is predicted by a simpler, linear model compared to f and g in (1). The
LMPC problem is discretized in time, with &k denoting the sample number (k € {i,..,i + N — 1}) at time
t = kTs. T is the sample time, N is the prediction horizon, and @) and R are tuning parameters penalizing
deviations from the setpoint and control moves, respectively. The input variables are parameterized over
N — 1 time steps, giving the vector of control moves {@;, ..., U;+N—1}.

Optimization of (1) with (2) embedded involves passing values of z, y, and y,, from the upper-level
problem (1) to the lower-level LMPC problem (2), solving for u, and passing the optimal values of u
back to (1). This information exchange repeats in a moving horizon fashion to enact closed-loop control.
Therefore, solving the integrated problem over a long scheduling horizon, ts.peq, requires significant
computational effort, making this formulation intractable for many practical applications. Therefore, in
this work, we accelerate solution of the integrated scheduling and control problem, using a reduced-order
SBM to approximate the closed-loop response of the process to changes in y,,(t) [43]. Following this
approach, the dynamic model of the process and its control system is replaced with an input-output model
relating the process output variables to changes in y,,. The SBM-based scheduling problem (SBMBS)

can be written:

min ®(x(tsehed))

st. Mz(t) = fspnm(x(t),y(t), Yy, (1), pt))
0 = gs (@(t). y(), ¥, (1), P(D)) ®)
ZL’(to) = X

0 > c(z(t), y(t), y., (1), p(t), t € T*

where fopy : RYe x RNs» — RNe and ggp,, @ X — RN denote the SBM. Similar to the original bi-level
optimization problem (1), the SBM-based optimization problem (3) determines the trajectory of y, that
minimizes ®. However, the evolution of the process is predicted by a closed-loop process model, and
there is no embedded, lower-level optimization problem @, = (o). Rather, the SBM, directly predicts
the closed-loop process behavior given y,,,.

The SBM can be derived using model reduction principles from a detailed dynamic model [44, 43].
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Alternatively, the SBM can be constructed via a data-driven approach, comprising system identification
using a set of dedicated experiments, historical operating data with routine setpoint changes (as in [45)),
or data generated by simulation of a detailed dynamic model [16]. The variables modeled in the SBM
need only include the subset of process variables that are scheduling relevant, i.e., they are involved in
® and/or represent important constraints in ¢(o), such as quality or safety-critical constraints. While
the selection of scheduling-relevant variables can be carried out using empirical process insights, Tsay
and Baldea [46] showed that a latent-variable approach could be used to reduce the dimensionality of

dynamical system fgp,, included in SBMBS.

2.2 Bottom-Up Approach: eNMPC

In contrast to the top-down approach, where knowledge of the control system is embedded in schedul-
ing calculations, an economic objective function—which might be identical to the scheduling objective
function in (1)—can be employed at the control level directly. In the eNMPC approach, the dynamic
optimization problem solved at the control level takes the process operating cost (or profit) explicitly
into account. We consider the formulation of an optimization problem subject to a semi-explicit index-1
differential-algebraic equation system (DAE) and additional constraints:

min ®(x(ty))

z,y,u

st Ma(t) = f(z(t),y(t), u(t), p(t)), V¢ € TNMPC
0 = g(x(t),y(t),u(t),p(t)), vt € TNMPC @
z(to) = xo

0= c(x(t),y(t),ult),pt)),te TeNMPC

where T~ = [to,t}], and ¢ : RN= x RNy x RV« x RN» — RNs are path and terminal constraints. f and
g define the open-loop process model as in (1). ¢y and t’f are the initial and final time, respectively.
® : RN= — R is the economic objective function. The ENMPC problem (4) determines the trajectory of
the MVs u(t) that minimizes ®, while the evolution of the process states, © and y, is predicted by the
open-loop process model in f and g.

In contrast to the top-down approach, the DAE system describing the process is an open-loop process
model, i.e., it does not include a lower level tracking MPC. However, it may include subordinated reg-
ulatory controllers (typically PID). The optimization problem (4) is solved on a moving horizon with a

sampling time ¢5; and a control and prediction horizon ¢, = t’f —tg. The resulting optimal control variable
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profiles are implemented on the process directly or as setpoints to the subordinate regulatory controllers.
We note here that the time interval ¢, = t’f — 1o is typically shorter than tscpeq = ty — to considered in
Problem (1).

The constraint sets of the dynamic optimization problems (1), (2), (3), and (4) include DAE systems
Several software packages, e.g., Dymola [47] and gPROMS [40], automatically reduce the DAE to a sys-
tem of ordinary differential equations (ODEs) by performing index reduction. Nevertheless, designating
constraints as DAEs is more general and convenient, and the methods presented in this work are not

restricted to ODEs.

3 Air Separation Process

The ASU shown in Fig. 2 and corresponding process model described by Johansson [37] is considered as
a benchmark process to compare flexible operation approaches. This section describes the process model

of the benchmark ASU and a set of practically motivated demand-response scenarios.

3.1 Process and Model Description

The process uses a single cryogenic distillation column to produce a stream of high-purity nitrogen
product. The inlet stream is first compressed in the main compressor (MC) to 6.8 bar and is cooled against
warming gaseous products in a multi-stream primary heat exchanger (PHX). For modeling purposes, the
PHX is divided into two sections (PHX1 and PHX2). At the end of PHX1, a portion &y,pine of the feed
stream is removed and passed through a turbine to generate some electricity. The rest of the feed stream
passes through PHX2, where it is liquefied. The two portions of the feed stream are re-combined and
fed to the bottom of the high-pressure distillation column (HPC). The bottoms product of the column is
expanded to atmospheric pressure and passes through the reboiler side of an integrated reboiler/condenser
(IRC) unit. The distillate of the column consists of high-purity nitrogen, and a portion &;,, is removed
as a product stream and sent to the PHX. The remainder of the distillate is sent to the condenser side of
the IRC and returned to the column as reflux. The product stream is removed at the midpoint of PHX1,
expanded across a second turbine, and passed through the entire PHX again. The waste stream from the
reboiler also passes through the PHX to provide cooling for the feed air.

To enable load shifting, the process flowsheet includes a nitrogen liquefier, a storage tank, and an
evaporator. Stored liquid nitrogen from the product tank can be evaporated and used to meet instan-

taneous gas nitrogen demand when production rate is decreased. On the other hand, excess product
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nitrogen (beyond instantaneous demand) can be liquefied and stored in the storage tank, allowing liquid

nitrogen inventory to be replenished, typically during periods of low electricity prices.

:gas N, product
waste
-

feed air Cooler

f

n mac h 4

§tur

HPC

0
T
X
Turbine PHX
¥a))
-
o
o

PHX2

v
5

Fig. 2: Air separation process flowsheet. MVs: 7i,c feed air flowrate, &, split factor to turbine, &.p
split factor to PHX2, {iq split factor to liquefier, 1y, feed air flowrate.

To encourage the comparison of methods in addition to those considered herein, we provide implemen-
tations of the process model in both gPROMS [40] and Modelica [41], and the model files are available
at [42]. The main parts of the process model are summarized below. The interested reader is referred to
[37] for further details.

Physical Properties: Air is modeled as a ternary mixture of nitrogen, oxygen, and argon. The
vapor phase is modeled as an ideal gas, while the Margules equation [48] is used to compute thermody-
namic properties for the liquid phase. Liquid Densities are computed using the Rackett equation [49].
Standard correlations are used for enthalpy and entropy calculations, and the Antoine equation [49] is
used to compute saturation pressures.

Turbines/compressor: The dynamics of the turbines and the compressor are assumed to be fast, and
thus these units are modeled using steady-state equations. We further assume that the compression and
expansion can be modeled as polytropic processes. The turbines and compressor are modeled with a
constant adiabatic efficiency of 0.8 using polytropic equations. The turbines/compressor are assumed to

operate within the surge or choke lines of the compressor map. Previous work [50] suggests that this
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simplification of the compressor model is justified when the ASU is operated within a relatively narrow
operation range. Nevertheless, the models can easily be adapted to include a compressor map and addi-
tional constraints for further investigations.

Distillation column: The distillation column is modeled as stage-by-stage column with 30 equilibrium
stages. Index-1 reduction is performed as in [51]. The column is assumed to be well-insulated (no heat
loss), with well-mixed stages. The condenser operates at 6.4 bar, and we assume a 0.2 bar total pressure
drop across the column with a linear pressure profile over the column stages.

Multi-stream heat exchangers: The PHX is modeled using a one-dimensional spatial domain. Dy-
namic mass and energy balance equations are used for the wall, while quasi-stationary balance equations
are used for the fluid. Most of the heat exchange occurs in PHX1, which is discretized into 50 finite
elements. The smaller region, PHX2 is treated as a single element.

Liquefier /evaporator: It is assumed that the dynamics of the liquefier are much faster than those of
the ASU, and the liquefier is modeled using steady-state material and energy balances. The liquefier
is represented as an ideal refrigeration cycle with overall efficiency of 0.8. The evaporator operates at
ambient conditions and is assumed to not require further energy input.

In total, the ASU process model is an index-1 DAE system with 415 differential states and ~2400
algebraic states (the gPROMS implementation contains a few additional algebraic states as tracking
variables). The model does not include any subordinate PID controller, and we employ the LMPC
described by [52]. The MV setpoints computed by the LMPC are passed directly to the process.

The LMPC has four controlled variables (CVs): Nproduct, Iproduct; ATrc, and ng. The first CV,
Nproduct Tepresents the amount of product produced by the process, and the corresponding value is time-
varying and determined by the scheduling layer. The process is designed for a nominal production rate
of Mproduct = 20 mol/s, but can modulate its production as long as operational constraints are met.
The remaining CVs are involved in important constraints that must be satisfied. Ip,oquct is the level of
impurity (oxygen and argon) in the product nitrogen stream, which must not exceed a value of 1500ppm
at any time. ATgc is the temperature difference between the reboiler and condenser side of the IRC,
which must not fall below a value of 2K at any time. Finally, ng is the holdup in the reboiler, which
cannot be depleted or exceed the physical capacity of the reboiler. These operational constraints are
summarized in Table 2. The split fraction to the liquefier &;;, is set such that the product demand is

exactly met at all times, i.e., Nproduct (1 —Elig) = Ndemand When Nproduct > Ndemand, and &;q = 0 otherwise.
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4 Closed-Loop Case Studies

In this section, specifics regarding the closed-loop simulations employing the top-down and bottom-up

approaches are first provided. Afterwards, we present and discuss the results found for optimal flexible

operation in the various scenarios.

4.1 Operation Scenarios and Settings

1

11 [
=300 | i
I
<200 ¥ ¥
— |r: d
K] 1 1
Q 4

0 12 24 36 48 60 72 84
Time [h]

(a)

hGNP [mol/s]

20

18]
0

12 24 36 48 60 72 84

Time [h]
(b)

Fig. 3: (a) Electricity price profiles. Blue, solid line: moderate electricity price profile. Red, dashed line:
extreme electricity price profile. (b) Product demand profile. Red, solid line: constant load. Blue, dashed

line: temporary load change.

Table 1: MVs and their bounds.

MV name lower bound

upper bound

hMAC [mol/s] 30

ftur [‘] 0
&g [] 0
gHPC H 0.51

Frain [mol/s] 0

50
0.1
1
0.54
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Table 2: Summary of operational constraints.

variable name lower bound upper bound constraint type
Iproduct [ppm| 0 1500 path

ATgre [K] 2 5 path

Ng [mol] 5000 40000 path

Niank [mol] 864000 3456000 path

Fanic [mol/s] 0 : path

Ng [mol] 20000 = initial - terminal

Niank [mol] 1728000 = initial - terminal

Table 3: Overview operational scenarios.

scenario electricity price fluctuations load change

S1 moderate no
S2 moderate yes
S3 extreme no
S4 extreme yes

Four benchmark demand-response scenarios that exhibit representative, practical challenges for flexible
operation are presented here. These scenarios include two different electricity price profiles, with the first
exhibiting moderate price fluctuations and the second extreme fluctuations. Both are shown in Fig. 3a.
The electricity price profiles were retrieved from the California Independent System Operator (CAISO),
corresponding to the day-ahead electricity prices from October 16-19, 2017 (moderate fluctuations), and
August 1-4, 2017 (extreme fluctuations). The electricity price profiles are taken from historical data, and
our ratings (moderate vs. extreme) are subjective and relative to current electricity pricing situations.
Although we consider a scheduling horizon of three days, prices are provided for four days for the moving
horizon approaches.

Accounting for moderate and extreme fluctuations in electricity price, as well as with and without the
occurrence of the unplanned maintenance event, the four scenarios used to compare SBMBS and eNMPC
in this work are summarized in Table 3.

In addition to the dynamics introduced by the electricity market, we consider the case of a change
in the product demand. As the product demand has to be exactly satisfied at all times, the product

is withdrawn from the storage tank when the actual product rate of the process is below the demand.
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Excess production is directed to the storage tank. The product demand profiles are illustrated with and
without the load change disturbance in Fig. 3b. Specifically, this comprises a schedule-level disturbance,
where the customer demand decreases by 10% (from the nominal 20mol/s to 18mol/s) for a period of
time between 36 and 54 hours. This disturbance is assumed to be caused by an unplanned maintenance
event downstream of the ASU. In this scenario, the occurrence of the change is unknown before it takes
place, but once the change begins, the new demand and duration are known (i.e., the length of time
required for the maintenance procedure is known). Other alternatives could be to consider both the start
and end times, as well as the magnitude of the demand change, to be known (planned maintenance), or
to all be unknown (random failure). The results for a random failure situation, where the occurrence of
the temporary demand change is completely unknown, are given in the Supplementary Material.

The objective of both approaches is to minimize the operating cost of the ASU, given by:

T
o = j Petee(t) (Peomp(t) + Piq(t) — Prus(t)) dt (5)

0

where peiec is the electricity price per MWh, Pomyp, the compressor power demand, Piq the liquefier power
demand, P, the power supplied by the two turbines, and the final time T is t; for the SBMBS and t’f
for the eNMPC.

The MVs and their bounds are summarized in Table 1. Different initial points for the MVs are used
for the two methods: the initial point for the SBM schedule corresponds to the steady-state found at
the nominal MPC setpoint values, as the controller tends to return the process to these conditions. On
the other hand, the initial point for the first eNMPC iteration corresponds to the optimal time-invariant
production. The process is initialized by simulating the mathematical model with the relevant MVs
until steady-state is reached. The path and terminal constraints given in Table 2 are included in the
optimization problems.

The nominal values in Table 1 correspond to the optimal time-invariant operation with respect to the
process power demand and subject to the constraints summarized in Table 2. This optimal time-invariant
operation provides a base case for economic performance. This corresponds to conventional optimal
operation without responding to (predicted) changes in electricity prices All solution times reported were
obtained on a 64-bit Windows 10 desktop computer with an Intel Core i7-8700 CPU at 3.20 GHz and
16GB RAM.
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4.1.1 SBMBS settings

SBMBS is performed using the closed-loop process and LMPC, with linear state-space models developed
for the considered ASU by Dias et al. [52]. The LMPC is implemented in the Matlab Model Predictive
Control Toolbox [53] with a sampling time of six mininutes and a prediction horizon of 10 hours. The
LMPC problem is solved almost instantaneously (<0.1 s) and could potentially also be implemented with
a shorter sampling time. Closed-loop simulations are performed by simulating the full-order gPROMS
dynamic model and passing the outputs to the controller implementation in Matlab (i.e., full state
feedback). The load change is handled in SBMBS following the approach of Pattison et al. [18], wherein
the production scheduling horizon is resolved for the remainder of the three-day horizon, and a high-gain
observer updates the states of the SBM.

A data-driven approach [16] is used to identify an SBM for the process and its LMPC: first, the
optimal schedule found using a steady-state model is simulated to create a data set for closed-loop
system identification. The identified Hammerstein-Wiener models provided by Pattison et al. [16] (for
a simpler controller rather than LMPC) were then updated by using the previous parameters as an
initial guess in the Matlab System Identification Toolbox [54]. The structure of the models remains
unchanged. The performance of the updated models on training and test data is given in Table 4. The
identified SBM predicts the process response to changes in the production rate setpoint, whose trajectory
is then optimized in SBMBS calculations. Scheduling calculations were performed using the built-in
dynamic optimization capabilities of gPROMS, with an hourly discretization of the production setpoint
that matches the hourly electricity price intervals. The production rate setpoint/target was constrained
between 15 and 25 mol/s during each hourly interval. The default tolerances for DASOLV and the SQP

optimizer in gPROMS are used.

Table 4: Identified Model Details.

variable # P-L input linear system output output poly. # P-L output NMSE NMSE
segments order model type order segments (training)  (validation)
Nproduct 5 3 polynomial 2 0.93 0.90
Tproduct 4 4 PW linear 6 0.82 0.65
NMAC 3 2 polynomial 2 0.89 0.83
Nr 3 4 polynomial 1 0.79 0.81
ATrc 9 4 polynomial 2 0.82 0.80
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4.1.2 eNMPC settings

The eNMPC utilizes the full-order, mechanistic process model and is implemented with a sampling time
of 15 min and a control horizon of 12 hours. We use equal prediction and control horizons and again
assume full state feedback. The MVs are discretized using a piecewise-constant parameterization with
uniform intervals of 15 min. In contrast to the optimization problems of the SBMBS, the eNMPC
directly utilizes all manipulated variables and constraints in Table 2. A warm-start strategy is used,
wherein each eNMPC optimization problem is initialized with the MV profiles resulting from the solution
of the previous eNMPC problem. The time delay resulting from the solution of the dynamic optimization
problem is neglected in this work, providing insight into the optimal performance and MV trajectories
with eNMPC.

The eNMPC handles the load change when it occurs, since the beginning of the load change coincides
with one of the online dynamic optimization problems. The eNMPC problems (4) are solved to local
NLP convergence with direct single-shooting [55, 56] using the DyOS (Dynamic Optimization Software)
framework [57]. The dynamic optimization problem is solved sequentially, using NIXE (NIXE Is eXtrap-
olated Euler) [58] as DAE integrator and SNOPT (Sparse Nonlinear OPTimizer) [59] as NLP solver. The
model is implemented in Modelica [41] using Dymola [47] and coupled to DyOS as a Functional Mockup
Unit (FMU) [60], generated with Dymola. FMU only supports ODEs, and Dymola performs symbolic
reformulation and numerical reduction of the DAE system to provide an FMU. We employ settings of

1075 as DAE integrator tolerance and 10~* as NLP feasibility and optimality tolerances.

Remark 1 gPROMS and Modelica use different numerical solvers (e.g., DASOLV and NIXE, respectively)
for time integration. However, we find that the two implementations give near-identical results. For the
solutions to the scenarios reported in this work, the average relative difference between the predictions of
the output variables between the two models is 5.6 x107%. The maximum relative difference is 4.2x107°.
Therefore, while the differences between schedules arise primarily from the different strategies used, there
may be small differences caused by the different numerical methods. For consistency, all results presented

in this work are given as the values generated by simulating the gPROMS implementation for the given

MYV profiles.

4.2 Numerical Results

Solution times: The solution of the SBMBS problems required 2229s and 2258s of CPU time for
scenarios S1 and S3, respectively. While this solution time is significant, the scheduling problem is solved

on a slower frequency (e.g., daily or every three-day scheduling period) compared to the online eNMPC
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Table 5: Summary of economic performance of SBMBS and eNMPC for different control scenarios. Base
represents the constant production rate case.

Base SBMBS A eNMPC A
S1  $1025.09 $1010.18 -1.5% $991.17 -3.3%
S2  $997.76 $988.12 -1.0% $966.15 -3.2%
S3  $1700.86 $1585.86 -6.8% $1561.71 -8.2%
S4  $1645.21 $1556.36 -5.4% $1527.62 -7.2%
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Fig. 4: Power consumption for optimal operation with eNMPC and the SBMBS. SBMBS profiles blue,
solid. eNMPC profiles blue, dashed. Electricity prices are shaded. Constant production rate operation
black, dotted. (a) Scenario S1. (b) Scenario S2. (c¢) Scenario S3. (d) Scenario S4.

Table 6: Summary of CPU times for eNMPC. The mean and maximum values, and the standard devia-
tions are calculated based on all eNMPC optimizations for each operation scenario.

scenario mean CPU time [s]

maximum CPU time [s] standard deviation [s]

S1 285 6269 482
S2 374 5444 332
S3 406 8059 530
S4 358 1198 178
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(constant demand, moderate electricity price fluctuation). SBMBS profiles blue, solid. eNMPC profiles
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Product stream impurity. (¢) Temperature difference in IRC.

25

3
1500 [y % ATy -
4y )
= R s | 28 !
S = o A A F :
- 1 1
= 8 1000 L Vil g e g
c =] I
S z L TR-LE ; i
g 5 ‘\:,' D i |'| :I Jd N
S Q < A Nl ' |
< E 500 G ST | Y T . T W L R
' \J e W i
15 0 1.8
0 20 40 60 0 20 40 60
Time [h] Time [h]
(b) ()

Fig. 7: Trajectories of selected state variables y for SBMBS and eNMPC operation and scenario S3
(changing demand, extreme electricity price fluctuation). SBMBS profiles blue, solid. eNMPC profiles
blue, dashed. Bounds red, dash-dotted. LMPC setpoints black, dotted. (a) Production rate np. (b)
Product stream impurity. (¢) Temperature difference in IRC.
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Table 7: Performance of eNMPC with fast-update method.

scenario mean CPU time [s] max CPU time [s] standard deviation [s] cost savings
S1 164 250 32 $997.83 -2.5%
S3 172 493 43 $1574.39  -7.2%

implementation. The solution of the SBMBS re-scheduling problem at hour 36 using SBMs required 401s
and 410s for scenarios S2 and S4, respectively. The eNMPC problem is solved at every sample time, and
statistics about the computation times are given in Table 6. In particular, while SBMBS is solved in <1h
for a 72-hour horizon, the eNMPC solutions are solved in ~5min for a 15-minute sample time. The SBM
scheduling dynamic optimization problem involves 72 decision variables (one setpoint discretized by 72
one-hour intervals), while each eNMPC problem involves 192 decision variables (4 manipulated variables
discretized by 48 fifteen-minute intervals).

Importantly, while time delays from solving the eNMPC problem were neglected, Table 6 shows that
the maximum CPU times found in all four scenarios exceed the 15-minute sample time of the eNMPC
system. Therefore, we also investigate a sub-optimal, fast-update method [28] on the scenarios without
load change (S1 and S3). In this approach, the number of SQP iterations is restricted to two at each
sampling time. This method significantly reduces both the mean and maximum CPU times (Table 7),
while still leading to a feasible solution and economic improvements. Specifically, the maximum CPU
time is reduced to 30-55% of the sampling time, while the mean CPU time is reduced to <20% of the
sampling time. Note that the CPU time equal to ~20% of the sampling time may still represent a non-
negligible delay in controller actuation. Advances to optimization solvers and/or computing hardware
could expedite these computations, or enable more SQP iterations (and improved economic performance)
while still guaranteeing real-time capability. We note that other fast-update methods have been proposed,
cf., [31]. Moreover, recent works [36, 34, 30] have shown that reduced-order modeling approaches may
further accelerate eNMPC calculations while still producing control variable profiles similar to those
obtained using a full-order model.

Economic evaluation: The objective function values of the implemented solutions are given in Table
5. Both approaches achieve high economic improvements compared to the constant production rate base
case. The improvements are higher for the extreme electricity price profile and lower if the load change
takes place, compared to the respective scenario without load change. The eNMPC achieves 0.2 up to
2.4 (scenario S2) times higher improvements compared to the improvements of the SBMBS, with the
improvements found from the two operation strategies being closer to each other for the more extreme

electricity price profiles. Note that even the worst-case 1% savings obtained by SBMBS in scenario S2
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is significant in a commodity market such as industrial gases. The eNMPC improvements are higher
relative to the improvements of the SBMBS for the moderate electricity price profiles (S1 and S2) than
for the extreme profile (S3 and S4). The eNMPC achieves higher economic improvements since it can
drive the process faster and more aggressively. Specifically, while the LMPC actually has a shorter sample
time, it relies on setpoints that are generated from a higher-level production scheduling problem. These
setpoints change at hourly intervals, while the eNMPC directly incorporates the process economics into
its 15-minute sample time, which is longer than the LMPC sample time, but shorter than a scheduling
time slot. Furthermore, with the exception of production rate, the setpoints for LMPC are left at their
steady-state values, and the LMPC explicitly drives the process away from its bounds. While this is
representative of practical operation, it translates to more conservative behavior.

On the other hand, the eNMPC uses the exact model of the controlled system and can reliably
maintain the CVs at their bounds. Furthermore the eNMPC does not penalize or restrict MV moves, as
is typical of LMPC, which would make the MV profiles smoother and less aggressive, in turn slowing the
closed-loop behavior. A similar smoothing effect could be achieved using a coarser MV discretization.
With the faster and more aggressive operation, the eNMPC can exploit shorter and more moderate
electricity price peeks better than the SBMBS. On the other hand, a more aggressive process operation
could affect the life time of the process units, e.g., compressor and turbines, and their actuators. While
these effects could be incorporated into the production scheduling problem, e.g., [61], we did not consider
shortened life spans of actuators or other units as a consequence of flexible operation in this work.

While the eNMPC achieves significant economic benefits, it suffers from the aforementioned compu-
tational issues. The optimal operation costs for eNMPC with a fast-update method are given in Table
7. The savings are slightly reduced by constraining the number of SQP iterations (compared to the
eNMPC results in Table 5), but the reduced computational times make the method more practically rel-
evant. Higher computational savings for the eNMPC can be achieved by using reduced dynamic models
[30, 36]. Moreover, the economic improvements remain higher than those obtained from the SBMBS for
the respective operation scenarios.

Power demand profiles: The operation cost follows directly from the power consumption profiles,
which are provided for the three-day horizon in Figure 4. Both methods can handle demand-side man-
agement well, in response to the given electricity prices (demand response): the instantaneous power
consumption in both schedules is approximately in antiphase with electricity price. Specifically, both eN-
MPC and the SBMBS realize an intuitive economic process operation: the power demand is high when

the electricity price is low and vice-versa. This behavior is more apparent for the extreme electricity price
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profile than for the moderate one, explaining the higher improvements for the extreme price profile. The
eNMPC leads to power demand profiles with larger amplitude fluctuations than the SBMBS, supporting
that the eNMPC operates the process more aggressively to obtain higher economic benefits. The eNMPC
can exploit in particular the moderate electricity price fluctuations better than the SBMBS; it can make
use of small electricity price fluctuations, whereas the SBMBS keeps the production constant during these
times. While the production rate (and power consumption in turn) is not explicitly constrained in the
eNMPC problem, it still saturates at a minimum value, which corresponds to the lower bound of nyac,
or the flow rate through the main air compressor. The production rate also reaches an upper value, which
implicitly results from the CV constraints discussed below.

The eNMPC can operate the process faster; the electricity demand is rapidly increased just before the
electricity price increase in order to increase production to load the storage tank and reduce the power
demand and production when the electricity price is high. On the other hand, SBMBS handles process
transitions more slowly; with only a single setpoint profile y, to be manipulated for optimization at the
scheduling layer, i.e., problem 3, the closed-loop process requires more time for increasing the electricity
demand without violating operational constraints (e.g., Figure 4d from 20 h to 40 h). Since the CVs
involved in operating constraints are not considered in the upper-level scheduling problem, SBMBS can
only avoid constraint violations by the LMPC driving the CVs to their steady-state setpoints. The CVs
are not moved away from their setpoints and/or bounds in anticipation of future behavior, and tradeoffs
between the CVs are not considered during scheduling. Finally, slower process operation from SBMBS
may result from using a LMPC as the tracking controller. Previous work [62] has suggested that, while
more computationally intensive, nonlinear MPC can result in faster closed-loop performance compared
to LMPC.

Storage tank holdup profiles: The extent of the flexible operation can be seen from the storage
tank profiles, which are shown in Figure 5 for scenarios S1 and S3 (no load change). The profiles for the
remaining scenarios are provided in the Supplementary Material. The tank is filled when the electricity
price is low, and product is withdrawn from the tank otherwise. The tank level profiles from SBMBS
operation and eNMPC operation appear qualitatively very similar, which is remarkable, since the eNMPC
uses only a 12 h control horizon. Although eNMPC achieves higher economic improvements (Tables 5
and 7), it makes less use of the storage tank compared to SBMBS. Apparently, the eNMPC operates the
process closer to the production boundaries: since the storage tank is used less extensively, the production
has to be satisfied by the actual process production rate more often. On the other hand, the tank profiles

show that SBMBS is able to consider electricity-price trends over a longer time horizon (72 h in this case).
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The SBMBS can hold excess storage for extended periods of time, in anticipation of higher electricity
prices later in the scheduling horizon. Similar to the electricity demand profiles, the storage tank holdup
profiles show the aggressive process operation by eNMPC; product is withdrawn from the tank leading
the tank level to decrease below its base level until the production rate is rapidly increased and the tank
is refilled (Figure 5b from 40 h to 60 h). However, the endpoint constraint of returning Ng at ¢ = 72h
is not exactly met by the eNMPC, since the eNMPC does not consider the full 72-h scheduling horizon
and is therefore more strategically myopic.

Profiles of selected state variables: The profiles of the four controlled variables for both eNMPC
and SBMBS are shown again for scenarios S1 and S3 (scenarios without load change) in Figures 6 and
7. As expected, the output variables in the SBMBS schedule are guided to their setpoints by the LMPC,
while the same variables are guided to their respective bounds by the eNMPC. The LMPC problem
seeks to bring the controlled variables, other than production rate, to their base-case setpoint values.
These setpoints are not considered in the production scheduling layer, resulting in a smaller scheduling
problem 3, but with fewer setpoint profiles yg, to be manipulated for optimization. In particular, the
setpoint for product impurity appears conservative, as the impurity never reaches the bound of 1500 ppm
in the SBMBS (Figures 6b, 7b). Adjusting this setpoint may improve process performance (in terms of
energy consumption), but it is difficult to determine a priori a value that balances process robustness
with operational flexibility. In fact, the impurity levels found in the SBMBS are much closer to the bound
of 1500 ppm for the extreme electricity price profile (Figure 7b), even though the same setpoint is used.
This suggests that the high degree of process fluctuations (driven by larger fluctuations in electricity
price) pushes the SBMBS to operate more similar to the eNMPC, which is confirmed by the similarity in
economic performance. While decreasing the weight on impurity in the LMPC may also allow to SBMBS
to push the process closer to its bounds for the case of moderate price fluctuations, this would likely
result in violation of the impurity constraint given extreme electricity prices. In a broader sense, this
observation confirms that the performance of production scheduling is highly dependent on the controller
tuning and setpoints, in addition to the schedule itself.

This behavior reveals a primary difference between the approaches: the eNMPC seeks to push the
system to its limits to maximize economic performance, while the SBMBS relies on a control system
that seeks to maintain output variables at their LMPC setpoint values. Therefore, eNMPC demonstrates
improved economic performance by using all four MVs to optimize the economic objective function. Oper-
ation at the process bounds is enabled by using the accurate mechanistic process model for eNMPC. Thus,

the eNMPC can exploit in particular the moderate electricity price fluctuation with higher improvements
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than the SBMBS. On the other hand, SBMBS uses the production rate setpoint as the only setpoint y,
to be manipulated in order to optimize the economic objective function (at the scheduling level), yet can
achieve relatively similar economic performance depending on controller tuning. The remaining MVs are
set by LMPC, preserving the infrastructure of the conventional control system and the corresponding
dynamic stability. Scheduling with SBMBS finds remarkably similar performance to eNMPC in the ex-
treme electricity price scenarios (S3 and S4) even without knowledge of the full process model: SBMBS
involves only a low-order data-driven SBM and a linear model for control. Note that electricity price
fluctuations similar to the extreme scenario may become more commonplace with increased penetration
of time-varying electricity generation from renewable sources (e.g., wind and solar energy).

The production rates (Figures 6a, 7a) for the SBMBS and eNMPC solutions appear similar, although
the faster and more aggressive process operation by the eNMPC is again revealed. Intuitively, the
production rate profiles closely mirror process power consumption (Figure 4): eNMPC is able to ramp
up production more quickly, while the SBMBS operates more conservatively (e.g., at ¢ =20 h) to avoid
the violation of operation constraints.

The SBMBS temporarily violates the 2K lower bound on the temperature difference ATjgc in the
integrated reboiler-condenser (Figures 6¢, 7c). For this reason, a back-off approach (e.g., [63]) should be
used to account for inaccuracy in the identified SBMs. A different controller tuning may also help in
this regard, similar to the above discussion of the impurity constraint. Since the integrated scheduling
and control problem is solved over the full scheduling horizon (tscheq = 72 h), dynamic optimization with
the full-order process model is not tractable in a practical amount of time [52]. In contrast, the eNMPC
operation uses the exact process model and does not violate 2K lower bound on the temperature difference
ATigrc at any point in time. In practical application, the eNMPC may also require back-offs to satisfy
path constraints in the presence of disturbances, modeling errors, delay, etc. [64]. This would result in
more a conservative operation compared to the eNMPC using an exact process model, as reported here.

Additional profiles: For additional insight into the optimal solutions presented in this work, the
unit-wise energy consumption of all solutions (i.e., attribution to turbines, compressor, and liquefier) are
given in the Supplementary Material. In these profiles we note that the most significant contributors to
the electricity demand of the ASU are the MC and the liquefier, whereas the energy supply from the
turbine seems to be negligible. The liquefier is only used temporarily during extreme electricity price
peaks, since liquefying surplus product for later usage consumes electricty itself. Therefore, the savings
from load shifting must exceed the costs introduced by liquefying excess product. The profiles of the

manipulated variables u(t) for all solutions are also provided in the Supplementary Material. The MVs

©A. Caspari and C. Tsay et al. 23 Page 23 of 31



20

21

22

23

24

25

26

27

28

29

30

31

Top-Down vs Bottom-Up 27.5.2020

u reach their bounds often under eNMPC, with potential implications in schedule robustness and/or
equipment degradation. On the other hand, the LMPC penalizes large changes in u, and & yrpine and
& po tend to remain close to their nominal steady-state values when the SBMBS schedule is implemented
with the LMPC.

In the Supplementary Material, we also provide results from closed-loop simulations with completely
unknown load-changes. Here, the change in product demand must be detected through feedback of the
storage tank holdup. The results show that both operation strategies are able to handle this scenario well:
they achieve even higher economic improvements with respect to the constant production benchmark.
The eNMPC again outperforms the LMPC for the case of moderate electricity price fluctuations, while

the savings are very similar for the case of extreme electricity price fluctuations.

5 Conclusions

The flexible operation of continuous chemical processes enables economic improvements in dynamic mod-
ern markets with fast-changing feedstocks and diversified energy sources. Many top-down and bottom-up
approaches for flexible operation have been proposed in the literature, and in this work two approaches
representative of these two paradigms are compared. We implement a model of a small air separation unit
process as a benchmark process for comparing flexible operation methods and provide a set of prototyp-
ical scenarios. An LMPC system is developed for the process, along with a reduced-order scale-bridging
model that can be solved to produce optimal schedules while considering the closed-loop dynamics of the
process and its existing control system. Further, an eNMPC system is developed for the process and is
implemented to simultaneously control the process and maximize its economic performance.

The results on the benchmark process show that both methods enable economic improvements by
flexible operation, while each has its own advantages and disadvantages. SBMBS finds lower economic
improvements compared to the eNMPC approach, but takes advantage of the existing control system
and does not require any new infrastructure. Furthermore, the existing control system maintains the
dynamic stability of the system, and the scheduling problem can be solved over a longer time horizon
owing to the use of a reduced-order model (the SBM). On the other hand, the eNMPC has access to
the full open-loop process model and thus accurately predicts the process behavior, while the SBMs are
approximations. Therefore, the eNMPC system operates the process more aggressively and finds larger
economic improvements from flexible operation (especially with lower fluctuations in electricity prices),
but the nonlinear economic control problem requires new infrastructure for process operations and is

more computationally challenging. The computation times found in this study suggest that fast-update
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methods and /or model reduction may be required for eNMPC to be real-time applicable in many practical
applications.

While this work demonstrates the high potential of eNMPC in flexible operation, future work should
investigate further the impact of fast-update methods and/or model reduction that may be required in
practice. With respect to industrial application it is also necessary to analyze how the flexible process
operation affects the life time of the process equipment as a future work. These methods are particularly
relevant when applying eNMPC to chemical processes of larger scale, e.g., multi-product ASUs. On
the other hand, future work for SBMBS could investigate alternative data-driven model structures, re-
scheduling techniques, and optimization formulations (e.g., backoff constraints, rate-of-change constraints,
transfer of degrees of freedom between control and scheduling layers). Motivated by the observation that
SBMBS performance is highly dependent on the process control system, future work could study the
combination of an upper layer closed-loop scheduling with alternative controllers, such as a subordinate
nonlinear MPC that may accelerate process operation. In general, alternative control strategies for both
eNMPC and SBMBS can be tested using the benchmark process model, including hierarchical structures,
nonlinear lower-level tracking controllers, and/or decentralized control strategies. It would further be
interesting to compare top-down and bottom-up approaches for the case of an imperfect model, or a case
involving disturbances at the process level, where online state estimation would be required to update
the optimal schedule. Similarly, in the absence of full state feedback, a state estimator would be required
to retrieve the initial states for the controller model. Finally, the approaches for dynamic optimization
could be studied, including alternative DAE integration/shooting methods, warm-starting methods, and
optimization solvers. The models provided in gPROMS and Modelica are easily linked with Matlab,

Python, and DyOS, which can access a wide variety of optimization solvers and numerical algorithms.
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