000877454 001__ 877454 000877454 005__ 20240709081909.0 000877454 0247_ $$2doi$$a10.1016/j.jprocont.2019.10.008 000877454 0247_ $$2ISSN$$a0959-1524 000877454 0247_ $$2ISSN$$a1873-2771 000877454 0247_ $$2WOS$$aWOS:000501410500014 000877454 037__ $$aFZJ-2020-02207 000877454 082__ $$a004 000877454 1001_ $$0P:(DE-HGF)0$$aSchäfer, Pascal$$b0 000877454 245__ $$aEconomic nonlinear model predictive control using hybrid mechanistic data-driven models for optimal operation in real-time electricity markets: In-silico application to air separation processes 000877454 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019 000877454 3367_ $$2DRIVER$$aarticle 000877454 3367_ $$2DataCite$$aOutput Types/Journal article 000877454 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592208597_31294 000877454 3367_ $$2BibTeX$$aARTICLE 000877454 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877454 3367_ $$00$$2EndNote$$aJournal Article 000877454 520__ $$aOptimization of the energy consumption at fluctuating short-term electricity markets is a promising measure to increase the economic efficiency of energy-intense processes. This can be addressed by integrating the economic perspective directly into the process control, i.e., by using economic nonlinear model predictive control (eNMPC). We present a single-layer eNMPC framework for optimal operation of an industrial-scale nitrogen plant participating in real-time electricity markets. To achieve real-time capability, we utilize suboptimal updates as well as our reduced modeling approach for rectification columns combining compartmentalization and artificial neural networks (Schäfer et al., AIChE J., doi:10.1002/aic.16568). We demonstrate the real-time capability of the approach in-silico. We explicitly account for model-plant mismatch by using a detailed full-order stage-by-stage model that is common in literature as plant replacement. Our results show that close-to-optimal savings in electricity costs are enabled via the eNMPC strategy even under consideration of inherently uncertain market forecasts whilst safely satisfying production targets. Furthermore, the disturbance rejection capability of the control structure is investigated, showing that severe unmeasured disturbances with slow dynamics can be rejected effectively without violating product requirements. 000877454 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000877454 588__ $$aDataset connected to CrossRef 000877454 7001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b1 000877454 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b2 000877454 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3$$eCorresponding author$$ufzj 000877454 773__ $$0PERI:(DE-600)2000438-2$$a10.1016/j.jprocont.2019.10.008$$gVol. 84, p. 171 - 181$$p171 - 181$$tJournal of process control$$v84$$x0959-1524$$y2019 000877454 909CO $$ooai:juser.fz-juelich.de:877454$$pVDB 000877454 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 000877454 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 000877454 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 000877454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ 000877454 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b3$$kRWTH 000877454 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000877454 9141_ $$y2020 000877454 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PROCESS CONTR : 2018$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05 000877454 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-05 000877454 920__ $$lyes 000877454 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0 000877454 980__ $$ajournal 000877454 980__ $$aVDB 000877454 980__ $$aI:(DE-Juel1)IEK-10-20170217 000877454 980__ $$aUNRESTRICTED 000877454 981__ $$aI:(DE-Juel1)ICE-1-20170217