001     877454
005     20240709081909.0
024 7 _ |a 10.1016/j.jprocont.2019.10.008
|2 doi
024 7 _ |a 0959-1524
|2 ISSN
024 7 _ |a 1873-2771
|2 ISSN
024 7 _ |a WOS:000501410500014
|2 WOS
037 _ _ |a FZJ-2020-02207
082 _ _ |a 004
100 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Economic nonlinear model predictive control using hybrid mechanistic data-driven models for optimal operation in real-time electricity markets: In-silico application to air separation processes
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592208597_31294
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimization of the energy consumption at fluctuating short-term electricity markets is a promising measure to increase the economic efficiency of energy-intense processes. This can be addressed by integrating the economic perspective directly into the process control, i.e., by using economic nonlinear model predictive control (eNMPC). We present a single-layer eNMPC framework for optimal operation of an industrial-scale nitrogen plant participating in real-time electricity markets. To achieve real-time capability, we utilize suboptimal updates as well as our reduced modeling approach for rectification columns combining compartmentalization and artificial neural networks (Schäfer et al., AIChE J., doi:10.1002/aic.16568). We demonstrate the real-time capability of the approach in-silico. We explicitly account for model-plant mismatch by using a detailed full-order stage-by-stage model that is common in literature as plant replacement. Our results show that close-to-optimal savings in electricity costs are enabled via the eNMPC strategy even under consideration of inherently uncertain market forecasts whilst safely satisfying production targets. Furthermore, the disturbance rejection capability of the control structure is investigated, showing that severe unmeasured disturbances with slow dynamics can be rejected effectively without violating product requirements.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jprocont.2019.10.008
|g Vol. 84, p. 171 - 181
|0 PERI:(DE-600)2000438-2
|p 171 - 181
|t Journal of process control
|v 84
|y 2019
|x 0959-1524
909 C O |o oai:juser.fz-juelich.de:877454
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PROCESS CONTR : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21