000877455 001__ 877455
000877455 005__ 20240712112908.0
000877455 0247_ $$2doi$$a10.1002/aic.16721
000877455 0247_ $$2ISSN$$a0001-1541
000877455 0247_ $$2ISSN$$a1547-5905
000877455 0247_ $$2Handle$$a2128/25037
000877455 0247_ $$2WOS$$aWOS:000478196000001
000877455 037__ $$aFZJ-2020-02208
000877455 082__ $$a660
000877455 1001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b0
000877455 245__ $$aA flexible air separation process: 2. Optimal operation using economic model predictive control
000877455 260__ $$aHoboken, NJ$$bWiley$$c2019
000877455 3367_ $$2DRIVER$$aarticle
000877455 3367_ $$2DataCite$$aOutput Types/Journal article
000877455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591705181_25233
000877455 3367_ $$2BibTeX$$aARTICLE
000877455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877455 3367_ $$00$$2EndNote$$aJournal Article
000877455 520__ $$aThe penetration of renewable electricity promises an economic advantage for flexible operation of energy‐intense processes. One way to achieve flexible operation is economic model predictive control (eNMPC), where an economic dynamic optimization problem is directly solved at controller level taking into account a process model and operational constraints. We apply eNMPC in silico to an air separation process with an integrated liquefier and liquid‐assist operation. We use a mechanistic dynamic model as both controller model and plant surrogate. We conduct a closed‐loop case study over a time horizon of 2 days with historical electricity prices and input disturbances. We solve the dynamic optimization problems in DyOS. Compared to the optimal steady‐state operation, the eNMPC operating strategy gives a significant improvement of 14%. We further show that the eNMPC enables economic improvements similar to an idealized quasistationary scheduling. While the eNMPC provides control profiles qualitatively similar to those obtained from deterministic global optimization of quasistationary scheduling, the eNMPC satisfies the product purity constraints all the time whereas the quasistationary scheduling sometimes fails to do so. The eNMPC applies local optimization methods and achieves profiles similar to the scheduling solved using deterministic global optimization methods over the complete closed‐loop simulation time horizon.
000877455 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877455 588__ $$aDataset connected to CrossRef
000877455 7001_ $$0P:(DE-HGF)0$$aOffermanns, Christoph$$b1
000877455 7001_ $$0P:(DE-HGF)0$$aSchäfer, Pascal$$b2
000877455 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b3
000877455 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$eCorresponding author$$ufzj
000877455 773__ $$0PERI:(DE-600)2020333-0$$a10.1002/aic.16721$$gVol. 65, no. 11$$n11$$pe16721$$tAIChE journal$$v65$$x1547-5905$$y2019
000877455 8564_ $$uhttps://juser.fz-juelich.de/record/877455/files/aic.16721.pdf$$yOpenAccess
000877455 8564_ $$uhttps://juser.fz-juelich.de/record/877455/files/aic.16721.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877455 909CO $$ooai:juser.fz-juelich.de:877455$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000877455 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000877455 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877455 9141_ $$y2020
000877455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877455 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAICHE J : 2018$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877455 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000877455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877455 920__ $$lyes
000877455 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877455 9801_ $$aFullTexts
000877455 980__ $$ajournal
000877455 980__ $$aVDB
000877455 980__ $$aUNRESTRICTED
000877455 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877455 981__ $$aI:(DE-Juel1)ICE-1-20170217