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Abstract

The penetration of renewable electricity promises an economic advantage for flexible

operation of energy-intense processes. One way to achieve flexible operation is eco-

nomic model predictive control (eNMPC), where an economic dynamic optimization

problem is directly solved at controller level taking into account a process model and

operational constraints. We apply eNMPC in silico to an air separation process with an

integrated liquefier and liquid-assist operation. We use a mechanistic dynamic model as

both controller model and plant surrogate. We conduct a closed-loop case study over a

time horizon of 2 days with historical electricity prices and input disturbances. We solve

the dynamic optimization problems in DyOS. Compared to the optimal steady-state

operation, the eNMPC operating strategy gives a significant improvement of 14%. We

further show that the eNMPC enables economic improvements similar to an idealized

quasistationary scheduling. While the eNMPC provides control profiles qualitatively

similar to those obtained from deterministic global optimization of quasistationary

scheduling, the eNMPC satisfies the product purity constraints all the time whereas the

quasistationary scheduling sometimes fails to do so. The eNMPC applies local optimiza-

tion methods and achieves profiles similar to the scheduling solved using deterministic

global optimization methods over the complete closed-loop simulation time horizon.
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1 | INTRODUCTION

The enhanced use of renewables, for example, onshore wind and pho-

tovoltaic, for electricity production results in fluctuating electricity

prices.1,2 Exploiting these fluctuations promises an economic advan-

tage of flexibly operating electricity-intensive processes. There are

two requirements: (a) a “flexible process”, that is, a process with a

wide operation range and without big losses of efficiency and

(b) “flexible process operation”, that is, exploiting the process

flexibility in the operation. Thus, there is both economical and ecologi-

cal incentive to take advantage of flexible process load adjustment as

a reaction to changing market conditions. This is known as demand-

side management (DSM).3

DSM has been applied to various process systems in the last

decades, for example, by Ghobeity and Mitsos4 and Brée et al.5 Dif-

ferent concepts, recent advances and challenges of industrial DSM

have been summarized by Zhang and Grossmann6 and the rising need

for flexible operation in context of the integration of renewable
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energy sources and feedstocks has been explained in Reference 7.

DSM with respect to the electricity market is promising especially

when applied to electricity intensive process such as cryogenic air

separation units (ASUs).8,9 In the first part of this two-part work,10 we

proposed an air separation process with an integrated liquefication

cycle and liquid assist operation. It produces liquid nitrogen and liquid

oxygen and can be operated very flexibly with respect to the process

power demand by varying the liquid production rates and the activity

of the integrated liquefication cycle. We showed the wide operational

range of the proposed process (i.e., that it is indeed a “flexible pro-

cess”) by solving several steady-state optimizations for varying liquid

nitrogen and liquid oxygen production. Depending on the production

rates, the process power demand can be varied by about 88% while

satisfying the operational constraints including product purities, which

can be exploited for DSM. For instance, the liquid production rate

may be increased, leading to higher power demand, when the electric-

ity price is high and decreased otherwise, while the oxygen produc-

tion rate stays constant. Both, liquid and oxygen production rates may

be varied according to fluctuating electricity prices while the product

requirements in terms of amount and purity are satisfied. Therefore,

in this article we focus on DSM of the proposed ASU with integrated

liquefication cycle and liquid assist operation.

DSM of ASUs can be executed online, during operation, by inte-

grating the process operation tasks of scheduling and control.11-13

We use the terms of scheduling and control as defined, for example,

by Reference 13, where control takes into account operational deci-

sions on a time scale of minutes to hours and scheduling is used for

operational decisions on a time scale of several hour up to days. The

integration of scheduling and process control plays a crucial rule for

the introduction of sustainable processes7,12,14 and can be achieved

either by accounting for the closed-loop system dynamics in the

scheduling layer, for example,15-21 or by applying economic model

predictive control (eNMPC), also termed bottom-up strategy, for

example, by Reference 13, where economic objectives are directly

considered in the supervisory control layer, for example.22,23

In the first approach, based on scheduling with dynamic closed-loop

approximations, an upper-layer scheduling optimization problem is

solved to get setpoints. These setpoints are then passed to the control

layer, for example, a model predictive tracking controller, which acts as

process control. To achieve feasible setpoints, the process dynamics

are considered in the scheduling layer by using a model which repre-

sents the closed-loop behavior of the process. This closed-loop model

is obtained either by embedding the necessary optimality conditions of

the process in closed-loop with a tracking controller18-21 or by using a

data-driven model to approximate closed-loop behavior.15-17 The con-

troller level is not altered by the top-down approaches. It is rather

assumed that a suitable controller exists steering the process to the

desired set-points. This scheduling with a closed-loop approximations

approach has already been applied to ASUs. Baldea et al13 presented

an integrated scheduling and control framework. The closed-loop pro-

cess dynamics are captured in the scheduling problem using linear low-

dimensional time scale-bridging models and the actual controller has to

adjust the process control variables to follow the setpoints resulting

from the scheduling problem. Pattison et al15-17 extended the frame-

work presented by Baldea et al13 to explicitly incorporate process

inventories, such as storage tanks, into the scheduling and control prob-

lems and applied the framework closed-loop on a moving horizon. They

applied their method to a single-product nitrogen ASU and achieved

2.7% savings in electricity cost over a time horizon of 3 days compared

to constant production rate. Schäfer et al24 compared NMPC to a linear

model predictive control strategy in an application to the rectification

section of an ASU. They applied NMPC to track set-points resulting

from an offline dynamic optimization and showed that using NMPC

offers advantages in the process agility compared to a linear model pre-

dictive tracking controller. While many authors13,15-17 focused on the

scheduling layer and its integration with the control layer, but not on

the control layer itself, others24 also studied different types of opera-

tion schemes for the control layer but does not consider the control

action in the models for the scheduling layer. Jamaludin and Swartz18,19

presented a dynamic real-time optimization strategy where the lower

level MPC tracking controller is considered in the upper level by using a

bilevel formulation where the lower level, that is, the MPC tracking

problem, is substituted by its first order necessary optimality condi-

tions. They thus presented a method belonging to the top-down

approaches. Li and Swartz20,21 transferred this approach to distributed

control schemes.

An alternative to the scheduling approach with closed-loop models

embedded is eNMPC, where the controller level itself accounts for the

scheduling task, that is, an economic objective is used directly at the

controller level instead of using a controller to track preoptimized pro-

files. eNMPC promises several advantages compared to the scheduling

approach: The economic optimization problem is directly solved at the

controller level with an embedded dynamic process model reflecting

the process dynamics. Feasibility of predefined setpoints is thus not an

issue in eNMPC. Therefore, a simple control architecture can be used

and there is no need to map the economic goals and constraints to the

actual control cost which would additionally require suitable controller

tuning in the presence of more than one control variable and constraint.

The exact constraints can directly be used on the controller level, so

that no regulation of the constraints is needed. Closed-loop models or

closed-loop approximations, for example,15,17,18,20 are not required for

eNMPC. This is an advantage, as the rigorous treatment of the closed-

loop behavior by embedding the optimality conditions18-21 leads to

large set of constraints in the optimization problem that has to be

solved online. On the other hand, data-driven closed-loop approxima-

tions15-17 are limited because of the absence of extrapolability and the

restriction to the current control praxis of the process. Additionally,

there is a broad theoretical foundation on the performance, conver-

gence, and stability of the eNMPC, for example.25-27 On the other

hand, eNMPC has the drawback that a model is required which ade-

quately predicts the dynamic behavior of the process under consider-

ation. In addition, eNMPC requires a dynamic optimization problem to

be solved in real-time. However, eNMPC exploits the actual process

dynamics directly on the controller layer. The process performance is,

hence, not limited to an existing controller performance as in schedul-

ing with dynamic closed-loop approximations. On the other hand, the
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distinction of an upper layer economic problem and a tracking problem,

as in References 15-17, assigns specific tasks to each operational layer

without the requirement of weighting between economic and tracking

objective. However, a tuning of weights would also be required at the

tracking controller layer.

eNMPC has already been applied to ASUs. Huang et al28 pres-

ented an eNMPC application to a single-product ASU producing gas-

eous nitrogen using an advanced-step NMPC formulation,29,30 which

is essentially a sensitivity based fast-update method. They used a

collocation-based solution algorithm to solve the optimization prob-

lem. We recently applied a fast-update based eNMPC to an single-

product ASU producing gaseous nitrogen that is then liquefied to be

buffered in a storage tank.31 Further we applied a fast-update based

eNMPC to a large-scale multiproduct ASU using mechanistic models,

showing that the method is real-time applicable.32

Neither the scheduling approach nor eNMPC has been applied to

an ASU with integrated liquefier and liquid assist operation. Due to

several internal recycles of the process, the large-scale nature of the

process model, and the high flexibility potential shown in our first

part,10 the application of eNMPC to the process is a challenging and

interesting task. Therefore our focus in this work is on eNMPC of the

ASU we proposed in the first part with an integrated liquefication

cycle and liquid assist operation.10 Thus, we show how the process

can be operated flexibly by directly exploiting the process dynamics

on the controller level.

The remainder of the article is structured as follows. In the follow-

ing section, we summarize the ASU and process model and the pro-

cess control scheme. We explain the economic model predictive

control approach and mathematical formulation afterwards. We then

define the operational scenario and benchmark process operation

schemes before describe the implementation. We show and discuss

the results of the closed-loop simulation, and draw conclusions in the

last two sections.

2 | PROCESS AND MODEL

We proposed an ASU for the production of liquid oxygen and liquid

nitrogen (LOX and LIN, respectively).10 Figure 1 gives the flowsheet

of the process including the position of the control variables of the

process. The process topology is based on a double column, an inte-

grated liquefication cycle, and the nitrogen liquid assist operation.

A detailed process description is provided in the first part of our

work10 and is summarized in the following. Ambient air is compressed

F IGURE 1 Process flowsheet ASU with integrated nitrogen liquefication cycle (framed with dash-dotted line), liquid assist operation, and base-
layer control (flow indicator controller with dashed lines). Cold/warm booster (CB andWB, respectively) and cold/warm expansion turbine (CET and
WET, respectively) are energy integrated (dashed lines). The position of the control variables for the eNMPC case-study are indicated by the blue,
bold symbols and arrows. ASU, air separation unit; eNMPC, economic model predictive control [Color figure can be viewed at wileyonlinelibrary.com]
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to 6.5 bar in the main compressor (MC), cooled to 310 K, and is then

chilled in the primary heat exchangers (PHX1 and PHX2) interacting

countercurrently with the waste nitrogen waste streams (CGN and

GN). The stream is then fed to the high pressure column (HPC). The

HPC and the low pressure column (LPC) are energetically connected

by an integrated reboiler-condenser (IRC). A nitrogen-rich stream is

withdrawn from the HPC top, one part of it is sent to the IRC, the

other part to the liquefication cycle. The IRC leaving stream is partially

used as reflux for the HPC, as further feed stream for the liquefication

cycle, and as feed stream to the LPC top, at 1.5 bar, after it is cooled

in the subcooler (SC1). The oxygen-rich HPC bottom stream is chilled

in the subcooler (SC2) and enters the LPC. The oxygen product is

withdrawn from the LPC bottom, the nitrogen product is withdrawn

form the LPC top. The product streams are fed to the nitrogen and

oxygen storage tanks (STN and STO). Nitrogen product can be with-

drawn from the process as product or sent back as reflux to the LPC,

which is known as liquid-assist operation. A further top stream of the

LPC leaves the process as gaseous nitrogen (GN), flowing through the

SC1, SC2, PHX2, and PHX1. An additional withdrawal stream of the

LPC leaves the process as crude gaseous nitrogen (CGN). A part of

the GN is fed to the liquefication cycle, which provides the columns

with reflux when the liquid assist operation is not active and addition-

ally provides the process with cold liquid nitrogen by alternating com-

pression, subsequent cooling to 310 K, and expansion. The feed

compressor (FC) has an outlet pressure of 6.5 bar. The recycle com-

pressor (RC) takes the recycle stream to 31 bar, the cold booster

(CB) and warm booster (CB) to 55–75 bar, depending on the opera-

tional mode of the process. The streams are then expanded again in

the warm expansion turbine (WET) and cold expansion turbine (CET)

and sent to the separation (SEP). The liquefier streams are energeti-

cally integrated by the warm heat exchanger (WHX) and the cold heat

exchanger (CHX). The liquid phase of the SEP is sent back to the HPC

as reflux. The bottom holdups of the HPC and LPC are controlled

using PI controller.

We use a detailed mechanistic process model which is also used

as controller model. The model details can be found in the first part of

our two-part article,10 which we summarize in the following. Air is

modeled as thermodynamic mixture of 78 mol% nitrogen, 21 mol%

oxygen, and 1 mol% argon. We use Margules model33 as activity

model for the liquid phase and ideal gas for the vapor phase. We use

an extended Antoine equation for the vapor pressures, equations

from Reference 34 for ideal gas heat capacities, enthalpies, and entro-

pies, and the Rackett equation35 for the liquid densities. We calculate

the enthalpies of vaporization using the DIPPR correlation of Aspen

plus version 8.8 Plus. Compressors and turbines are modeled with

constant isentropic efficiency. We model the heat exchanger as a

one-dimensional spatially distributed system with finite differences

and dynamic energy balances for the heat exchanger walls, steady-

state equations for the fluids, and constant phase-dependent heat

transfer coefficients. We model the rectification columns with equilib-

rium trays using the MESH equations with quasistationarity assump-

tion for the specific enthalpy, a constant pressure drop, and a linear

hydraulic correlation. The LPC has 65 and the HPC 40 equilibrium

trays. CGN is withdrawn from the 12th stage of the LPC. We model

the condenser as total condenser using steady-state equations, and

the reboiler as equilibrium tray. We assume the tanks to be ideally

thermally insulated.

The process model comprises 371 differential and 14,150 alge-

braic states after suitable discretization of the one-dimensional heat-

exchanger models. The Modelica model is provided in the Supporting

Information.

3 | MODEL PREDICTIVE CONTROL SCHEME

We apply the single-layer operation scheme depicted in Figure 2; an eco-

nomic dynamic optimization problem (DO) is repeatedly solved online on

a moving horizon using the current process states and a process model,

cf., for example.36 Using the scheme, we apply is an eNMPC without ter-

minal constraints. A thorough theoretical analysis for the performance,

convergence, and stability of eNMPC without terminal constraints for

optimal periodic operation can be found in the work of Müller and

Grüne.27 In the following section, we describe the mathematical formula-

tion of the economic DO problem solved at the controller layer.

3.1 | Mathematical formulation

The process model as described in detail in the first part 10 is a semi-

explicit differential algebraic system with differential index of 1. Con-

sequently, a DO problem on a finite time horizon T = t0,t0 + tc + tp½ � of
the following form is to be solved online:

minu,x,y Φ u,x,y,p,d,qð Þ=
ðt0 + tc + tp
t0

L x tð Þ,y tð Þ,u tð Þ,p tð Þ,d tð Þð Þdt

+
Xnu
i=1

qi
Xnc, i −1
j=1

ui, j+1−ui, j
� �2 ð1aÞ

s:t:Mx
:
tð Þ= f x tð Þ,y tð Þ,u tð Þ,d tð Þ,p tð Þð Þ,8t2T ð1bÞ

F IGURE 2 Single-layer eNMPC scheme for flexible process
operation. Electricity market and demand information are known over
the control horizon. Disturbances are measured but unknown. They
are assumed to be time-invariant over the control horizon. eNMPC,
economic model predictive control
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0= g x tð Þ,y tð Þ,u tð Þ,d tð Þ,p tð Þð Þ,8t2T ð1cÞ

0=h x t0ð Þ,y t0ð Þ,d t0ð Þ,p t0ð Þð Þ ð1dÞ

0 ≥ c x tð Þ,y tð Þ,u tð Þ,d tð Þ,p tð Þð Þ,t2T ð1eÞ

u tð Þ= u tcð Þ,t2T j t> tc ð1fÞ

where f :X !Rnx and g :X !Rny define the differential-algebraic

system of index 1 with the constant and invertible matrix

M 2Rnx × nx , while h :Rnx ×Rny ×Rnu ×Rnp !Rnx indicates the initial

conditions and c :X !Rnc are the constraints. We define

X≔Rnx ×Rny ×Rnu ×Rnp ×Rnd . t0 2 R is the initial time. tc 2 R is the

control horizon and tp 2 R is the prediction horizon. u :T !Rnu are

the control variables, x : T !Rnx and y : T !Rny are the state vari-

ables, p : T !Rnp are given parameter predefined variables, in this

work the electricity prices and product demands, and d : T !Rnd are

external disturbances, in this work the feed air temperature distur-

bances. The objective function to be minimized consists of an eco-

nomic term and a penalty term: the economic term is the integrand of

L :X !R; the penalty term penalizes large control variable moves

using the weights q2Rnu . The weights can be tuned so that the eco-

nomic part of the objective function is greater than the penalty term.

The control variables ui,i 2 [1,nu] are discretized using nc,i elements.

We use direct single-shooting 37,38 to solve the optimization prob-

lems of the form (1). Using the penalty weights, we target smoother

control variable profiles and facilitate the numerical integration of

the process model during the optimization due to less fluctuating

control variable profiles.

4 | OPERATIONAL SCENARIO

In this section, we explain the scenario for the closed-loop simulation,

that is, how we define the parameter values p(t), the disturbance values

d(t), and the initial condition (1d). After explaining the general definitions

of the scenario and the eNMPC set-up, we describe the two benchmark

operation schemes of an optimal constant operation and an optimal

quasistationary scheduling operation used for comparison. Finally, we

summarize the eNMPC and benchmark operations in Table 3.

We conduct simulations over a time horizon of 2 days. We assume

a constant liquid product demand over the 2 days. We define a nomi-

nal product demand of 94 mol/s liquid oxygen and 58 mol/s liquid

nitrogen. These values for the nominal production are the same as

used in the first part of our paper.10 All operation schemes as pres-

ented below have to satisfy this nominal product demand. We use his-

torical electricity price data from the German day ahead market from

24th to 26th of February, 2018 shown in Figure 3a. The electricity

prices have to be defined for more than 2 days as in each iteration the

eNMPC uses the price information over the entire control and predic-

tion horizon. As feed air, we use a mixture of 78 mol% of nitrogen,

21 mol% of oxygen, and 1 mol% of argon.

For the eNMPC operation and the optimal constant operation we

assume the feed air temperature of the HX to be disturbed. The feed

air temperature is shown in Figure 3b. The shown temperature steps

may result from a pretreatment of the air using molecular sieves. A

mole sieve regeneration switching from adsorption to desorption,

takes place frequently, which trigger the temperature steps.39 The dis-

turbances are measured but the exact time-dependent profile is

unknown by the eNMPC. The eNMPC assumes the disturbances to

be constant for the whole control horizon.

4.1 | eNMPC process operation

The process behavior is simulated with the same model as the controller

model, that is, there is no plant-model mismatch. We assume full state-

feedback and neglect the time delay for the solution of the eNMPC

optimization problem (1). For the optimization problem (1), we have to

define the control and prediction horizon, the objective function, the

operational constraints, control variables ranges and discretization, and

the initial states for the DAE. For the eNMPC we use a sampling time of

15 min, a control horizon of 6 hr and a prediction horizon of 6 hr. Hori-

zons of more than 12 hr might further improve the eNMPC perfor-

mance, however, would also increase the computational time. We use

the following economic term for the objective function (1a):

L tð Þ= pel tð Þ PMC tð Þ+PRC tð Þ+PFC tð Þð Þ,

where pel is the fluctuating electricity price. PMC, PRC, and PFC are the

electricity demands of the compressors MC, RC, and FC.

(a) (b)

F IGURE 3 Electricity price and disturbance profile for the case-study. (a) Electricity price of the day ahead auction for February 24, 25, and
26, 2018.60 (b) Profile of the feed air stream temperature which is assumed to be disturbed due to molecular sieve switches in the air
pretreatment [Color figure can be viewed at wileyonlinelibrary.com]
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All constraints, control variables, and the operational cost term L of

the objective function are scaled to a range from 0 to 10. We reinitialize

the objective function Φ (1) to zero before solving each eNMPC optimi-

zation problem to avoid scaling problems. The storage tank holdups are

initialized at the beginning of the closed-loop simulation with an amount

of product that corresponds to 1 day of nominal production. The STO is

initialized with an amount that corresponds to 234 m3 liquid oxygen,

the STN is initialized with an amount corresponding to 177 m3 liquid

nitrogen. The eNMPC optimization problems apply the constraints sum-

marized in Table 1. We constrain the product amount and purity. We

use endpoint constraints to ensure that the STN and STO holdups are

at their initial level from the beginning of the closed-loop simulation at

the end of each prediction horizon. Thus, we enforce an average pro-

duction of 94 mol/s liquid oxygen and 58 mol/s liquid nitrogen as

required by definition of the scenario. We additionally constrain the

maximum pressure of the warm booster WB outlet stream, which is the

highest pressure in the whole process. We further constrain the vapor

fraction of the cold expansion turbine CB outlet stream, to ensure that

the stream is partially liquefied in the CB. The CHX outlet temperature

difference ΔTCHX and the IRC temperature difference ΔTCHX are con-

strained to guarantee physical meaningful model behavior, that is, to be

larger than a minimum value of 5 K. For the control variables we use an

equidistant discretization of 30 min over the control horizon, that is, a

discretization corresponding to two time of the eNMPC sampling time.

For the constraints, we use an equidistant discretization of 5 min for the

first hour and of 1 hr for the remaining hour of the control and predic-

tion horizon. Thus, we reduce the risk of an intermediate constraint vio-

lation coming with a coarse discretization and on the other hand do not

take the loss of high computational times coming with a fine constraint

discretization; both function values and sensitivities have to be evalu-

ated for each constraint at a discrete time point. By using a fine dis-

cretization at the first hour, we reduce intermediate constraint violation

in the nearest future of the current eNMPC iteration starting point. We

choose penalty weights for the control variables so that the penalty

term for the stream variables is greater than the penalty term for the

split factors and the complete penalty term is smaller than the economic

term by one order of magnitude. We tune the penalty weights heuristi-

cally by performing several closed-loop simulations with different

weights. The time-invariant initial values for the first eNMPC optimiza-

tion of and the bounds on the control variables are summarized in

Table 1. A warm-start strategy is implemented in which all subsequent

eNMPC optimizations use the solution of the previous optimization as

initial values for the control variables. As initial values for the control

variables of the eNMPC, we use the result of the steady-state optimiza-

tion and start the closed-loop simulation at the optimal steady-state for

the given nominal production rate; the optimal steady-state is used as

one benchmark operation and is explained in the next section.

4.2 | Benchmark I: optimal constant operation

We compare the eNMPC results with the optimal constant operation

benchmark optimized with respect to the power usage and producing

the same amount of liquid oxygen and nitrogen as the eNMPC during

the 2-day time horizon of the case-study. The benchmark operation is

taken from Reference 10. The steady-state optimization is performed

subject to the same model minimizing

L=PMC +PRC +PFC,

with the same operational constraints as in the eNMPC. As a result, we

obtain time-invariant optimal control variable values which we use as a

benchmark operation. The benchmark operation is an open-loop opera-

tion; the control variable values from the optimal steady-state are used as

control variable values in the benchmark simulation, where disturbances

are present. Details about the steady-state optimization can be found in

Reference 10. As we perform a steady-state optimization, the result does

not depend on a specific electricity price profile. As benchmark, we simu-

late the steady-state optimization result using the same electricity price

profile as the other operational schemes, as shown in Figure 3a.

4.3 | Benchmark II: optimal quasistationary
scheduling

We use an optimal quasistationary scheduling without the consider-

ation of the process dynamics in the scheduling layer as additional

TABLE 1 Summary of the control variables and operational
constraints

Control Lower bound Upper bound Penalty Initial

_nair (mol/s) 270 630 0.05 453.83

_nassist (mol/s) 0 150 0.05 1.096

ξGNP (−) 0.001 0.999 0.1 0.64

ξHP1 (−) 0.5 0.98 0.1 0.85

ξHP2 (−) 0.2 0.3 0.1 0.3

ξLP1 (−) 0.001 1.0 0.1 0.28

ξLiq1 (−) 0.2 0.5 0.1 0.43

ξLiq2 (−) 0.7 0.9 0.1 0.83

Constraint Lower bound Upper bound Type

φcet, out 0.85 0.98 Path

pcet, out (bar) 55 75 Path

ΔTHX (K) 5 - Path

ΔTIRC (K) 2 - Path

nSTO (mol) 8,145,878.4 1e8 Endpoint

nSTN (mol) 4,997,305.152 1e8 Endpoint

xLOX (−) 0.995 1.0 Path

xLIN (−) 0.99995 1.0 Path

Note: As initial values for the first eNMPC optimization, the solution of the

steady-state optimization is used. _nair and _nassist are the feed air stream

and the liquid assist stream, respectively. ξ are split factors. xLIN and xLOX

are the inlet stream purities of the LIN and LOX storage tank, STN and

STO, respectively. nSTO and nSTN are the holdups of the LOX and LIN tank,

STO and STN, respectively. ϕcet, out and pcet, out are the vapor fraction of

the stream leaving the CET and the pressure of the stream entering the

CET/leaving the WB, respectively.

Abbreviation: eNMPC, economic model predictive control.
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benchmark. For this purpose, we fit a bivariate polynomial to the opti-

mal overall process power usage as a function of the LIN and LOX

production rate based on the results of the steady-state optimizations

presented in the first part of the two-part article.10 We discretize the

time horizon T using Ns 2 N elements and assume piecewise constant

LIN production rates and electricity prices in each discretization ele-

ment. We use the same equidistant discretization over the 2 days

time horizon as for the eNMPC, that is, Δti = 15min 8 i2 [1,Ns] and

Ns = 192. We use one constraint to guarantee the same minimum

amount of LIN and LOX to be produced as used by the eNMPC case-

study and by the benchmark operation. The minimum amount of LIN

is NLIN, min = 58 mol/s �48hr �3, 600 s/hr = 10,002,400mol. The mini-

mum amount of LOX is NLOX, min = 94 mol/s �48hr �3, 600

s/hr = 16,243,200mol. We then minimize the overall power usage

subject to the minimum amount of liquid nitrogen and oxygen pro-

duced over the time horizon of 2 days. Thus, the optimal schedule has

the same minimum amount of liquid nitrogen and oxygen produced

during the time horizon as the eNMPC and the optimal constant

benchmark operation. We use the following quasistationary schedul-

ing problem formulation

min
_nLIN2LIN, _nLOX2LOX

cost _nLIN, _nLOXð Þ=
X

i2 1,Ns½ �
Ptotal _nLIN, i, _nLOX, i

� �
�pel, i�Δti

s:t:
X

i2 1,Ns½ �
_nLIN, i�Δti ≥NLIN, min

X
i2 1,Ns½ �

_nLOX, i�Δti ≥NLOX, min ,

ð2Þ

where Ptotal : R2 ! R is the bivariate polynomial regressed on the total

power usage data presented in our previous work.10 _nLIN 2RNs and

_nLOX 2RNs are the discretized LIN and LOX production rates. pel 2RNs

are the discretized electricity prices. Δt2RNs are the durations of the

discrete time intervals, determined by Δti = T d
i −T d

i−1, where Td 2RNs

is the vector of discrete time points. LIN= −130,150½ �Nsmol=s are the

minimum and maximum LIN production rate. LOX= 50,130½ �Nsmol=s

are the minimum and maximum LOX production rate. The optimal

scheduling problem (2) has 384 degrees of freedoms. The optimal

quasistationary scheduling benchmark is solved offline and does not

consider any disturbance.

From the solution of (2), we obtain an optimal quasistationary

schedule, that is, profiles for the LIN and LOX production rates. Using

the steady-state optimization results of our previous work,10 we inter-

polate the control variable values as function of the LIN and LOX pro-

duction rates using piecewise linear interpolation. We use the optimal

schedule as solution of (2) and the interpolated control variable values

to calculate the profiles of the control variables. We then implement

these control variable profiles for a forward simulation of the dynamic

process model under the presence of disturbances to study the reac-

tion of the dynamic model to the resulting control variable profiles

from the optimal quasistationary schedule.

5 | PERFORMANCE COMPARISON

We compare the quasistationary scheduling and eNMPC operation

strategy to the constant operation benchmark. We use the following

measure to compare the performance of the eNMPC, the constant

operation benchmark, and the quasistationary scheduling benchmark:

ηi =1−
cel, i=nprod, i

cel,cob=nprod,cob
, i2 cob,eNMPC,osf g ð3Þ

where cel, co, cel, eNMPC, and cel, os are the operation cost for the 2 days

of the simulation of the constant operation benchmark operation, the

eNMPC operation, and the optimal quasistationary scheduling bench-

mark operation, respectively with

cel, i =
ðtend
t0

pel tð Þ PMC, i tð Þ+PRC, i tð Þ+PFC, i tð Þ
� �

dt, i2 cob,eNMPC,osf g

PMC, PRC, and PFC are the power usage of the MC, RC, and FC,

respectively, resulting from the with the different process operation

schemes. pel is the time-dependent electricity price. The amount of

product is calculated using

nprod, i =
ðtend
t0

_nLOX, i tð Þ+ _nLIN, i tð Þdt, i2 cob,eNMPC,osf g

where _nLOX and _nLIN are the molar flow rates withdrawn from the

LOX and LIN storage tank, respectively, resulting from the with the

different operation schemes.

By using (3) as ratio for the improvement of the relative operation

cost, we take different product amounts into account for the economic

evaluation of the eNMPC and the benchmark process operations.

6 | IMPLEMENTATION

We implement the process model in Modelica,40 export it as FMU,41

and use the FMU in the optimizations and simulations. We solve the

eNMPC optimization problems (1) and the process simulations in our

open-source optimization framework DyOS42,43 for direct adaptive

shooting.44,45 The overall framework for the closed-loop simulation is

implemented in Python46 using DyOS via its Python interface. In

DyOS, we use the SQP solver SNOPT version 7.2-447 and the DAE

integrator NIXE including sensitivity integration.48 A Windows 7 desk-

top computer equipped with an Intel Core(TM) i3-6100 processor

running at 3.7 GHz and 8 GB RAM is used for the computations of

this work. The options of the integrator NIXE and the NLP solver

SNOPT used for direct single-shooting in DyOS for the solution of the

eNMPC optimization problem are summarized in Table 2.

The polynomial regression of the power usage as function of the

production rates for the ideal scheduling benchmark is done using the

Python machine learning package scikit-learn.49 SciPy50 is used for the

piecewise linear interpolation of the control variable profiles based on
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the steady-state optimization data. Baron version 16.3.451 is used from

GAMS version 24.7.152 as deterministic global NLP solver for the solu-

tion of the ideal scheduling problem (2) with the default options.

7 | RESULTS AND DISCUSSION

We present open- and closed-loop simulation results of the

multiproduct ASU over a time horizon of 2 days in this section. We

show the benchmark operation results before the eNMPC operation

results, and discuss them afterwards.

7.1 | Benchmark I: optimal constant process operation

The trajectories of the optimal constant operation are shown by the

dashed lines in the Figures 4–7. The operational cost of the

benchmark operation for 2 days are about 31,000 € and the amount

of liquid product is 26.5 × 106 mol (Table 3). Because of the constant

operation, the slope of the operational cost profile (Figure 6g), is pro-

portional to the electricity price profile (Figure 3a). We see that the

highest contribution to the operational cost is the power usage of the

RC followed by the demand of the MC (Figure 4). The FC has the low-

est electricity demand (Figure 4). The high electricity demand of the

RC is due to the high recycle stream (Figure 5g).

The control variable values (Figure 7), correspond to the solution

of the steady-state optimization and are hence constant. They are all

within their bounds. The liquid assist stream (Figure 7b), is close to its

lower bound. We see that the steady-state benchmark operation sat-

isfies the operational constraints (Figure 6). The WB outlet pressure is

at its upper bound (Figure 6f). The CHX temperature difference

(Figure 6h), is at its lower bound. The IRC temperature difference

(Figure 6i), is apart from the lower bound. The tank profiles are shown

in Figure 6b,d. We see that the tank levels are constant as enforced

by definition of the benchmark operation.

7.2 | Benchmark II: optimal quasistationary
scheduling

The bivariate polynomial regression for the power usage of the process

as function of the production rates resulting from the steady-state opti-

mizations is shown in Appendix C. A bivariate polynomial of order 8 pre-

cisely describes the data. The resulting trajectory of the LIN and LOX

TABLE 2 Options for the integrator NIXE and the NLP solver
SNOPT

Option Value

Integrator tolerances for NIXE 1 × 10−3

Major SQP iterations limit of SNOPT 25

Major step limit of SNOPT 1 × 10−2

Major optimality tolerance of SNOPT 1 × 10−2

Major feasibility tolerance of SNOPT 1 × 10−2

Note: We use the default values for the options not listed in the table.

(a) (b) (c) (d)

F IGURE 4 Total power usage and single contributions to the electricity usage of the process. Optimal constant benchmark operation profiles
dashed. eNMPC operation profiles solid. Quasistationary scheduling dash-dotted. (a) Total power usage. (b) Electricity usage of the main compressor
MC. (c) Electricity usage of the integrated liquefier feed compressor FC. (d) Electricity demand of the integrated liquefier recycle compressor
RC. eNMPC, economic model predictive control; FC, feed compressor; MC, main compressor [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Summary and economic evaluation of benchmark and eNMPC operation

Constant operation Ideal scheduling eNMPC

Objective Power usage Operation cost Operation cost

Optimization type Steady-state optimization by

terminal state dynamic

optimization

Quasistationary global deterministic

optimization

Dynamic optimization

Time-variable production No Yes Yes

Cost (€) 31,072 26,333 28,053

Product amount (mol) 26,480,512 26,493,961 27,786,682

Improvement η (%) 0 15.3 13.96

Note: The economic improvement is calculated using (3).

Abbreviation: eNMPC, economic model predictive control.
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production rate of the optimal scheduling operation are provided in

Appendix C. The operation cost resulting from the scheduling operation

is given in Table 3. The total CPU time for the global deterministic opti-

mization of (2) is about 4 s. To see the reaction of the dynamic model to

the quasistationary schedule, we interpolate the control variable profiles

based on the steady-state optimization data and the LIN and LOX pro-

duction rate profiles. Figures showing the interpolation of the control

variables are provided in Appendix B. The resulting control profiles are

shown with dash-dotted lines in Figure 7. We see that the control vari-

able profiles reflect the electricity price fluctuations. Especially, the feed

(a) (b) (c) (d)

(e) (f) (g) (h)

F IGURE 5 Molar stream profiles. Optimal constant benchmark operation profiles dashed. eNMPC operation profiles solid. Quasistationary
scheduling dash-dotted. Bounds dotted. (a) Inlet stream for LOX storage tank STO. (b) Inlet stream of LIN storage tank STN. (c) CNG waste
stream. (d) GN waste stream. (e) Integrated liquefier inlet stream from splitter SCGN. (f) Integrated liquefier inlet stream from primary heat
exchanger PHX2. (g) Integrated liquefier recycle stream. (h) STN net inlet stream as difference of STN feed stream and liquid assist stream. Zero
marked with black, dotted line. eNMPC, economic model predictive control [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (d) (e)

(e)

(i)

(f) (g) (h)

F IGURE 6 State profiles. Optimal constant benchmark operation profiles dashed. eNMPC operation profiles solid. Quasistationary scheduling
dash-dotted. Bounds dotted. (a) Purity of LIN product stream. (b) Molar holdup of LIN storage tank STN. (c) Purity of LOX product stream.
(d) Molar holdup of LOX storage tank STO. (e) Liquid phase fraction of the stream leaving the cold expansion turbine CET. (f) Cold expansion
turbine CET inlet pressure. (g) Process operation cost. (h) Cold heat exchanger CHE outlet temperature difference. (i) IRC temperature difference.
eNMPC, economic model predictive control [Color figure can be viewed at wileyonlinelibrary.com]
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air stream is increased when the electricity price is high and decreased

otherwise (Figure 7a). The liquid assist operation is active when the elec-

tricity price is low, so that more cooling is provided to the process, which

in turn produces more liquid product that can then be used later. The liq-

uid assist operation is active when the electricity price is high (Figure 7b)

to provide reflux to the columns and cooling to the process when the liq-

uefication cycle, fulfilling this tasks when the electricity price is low, is

not active. The reaction of the dynamic process model to the controls

resulting from the quasistationary scheduling are shown with dash-

dotted lines in Figures 4–6. The power consumption profiles of the

compressors, that is, the single contributor to the process power usage,

reflect the electricity price fluctuations (Figure 4). The process power

usage is high when the electricity price is low and vice versa (Figure 4a).

The total power usage is mainly influenced by the RC (Figure 4d). The

stream variables also reflect the electricity price fluctuations (Figure 5).

The STN and STO feed streams are high when the electricity price is

low and vice versa (Figure 5a,b). The liquid assist operation is active dur-

ing low electricity price times (Figure 5h). The liquefication cycle activity

is high when electricity price is low and vice versa (Figure 5e–g). The

CGN waste stream is high and the GN waste stream is low when the

electricity price is low (Figure 5c,d). We show selected state profiles of

the optimal scheduling operation in Figure 6. We see that the STN and

STO holdups clearly correspond to the electricity price profile; the tanks

are loaded when the electricity price is low and unloaded otherwise

(Figure 6b,d). The vapor fraction of the CET corresponds to the lique-

fication cycle activity (Figure 6e); the CET produces less liquid when the

electricity price is high and more liquid otherwise. This is due to the

increased CET flowrate when the liquefication cycle is active, and the

fact that the CET inlet pressure is at its upper bound during this times.

Increasing the amount of liquid is beneficial, however, it would require

in increase in the CET inlet pressure. The CET inlet pressure is at the

upper bound when the electricity price is low, to produce more liquid in

the CET due to expansion from higher pressures (Figure 6f). This in turn

provides more cooling to the process, so that more liquid is produced.

The temperature differences in the CHX and IRC are always satisfied

(Figure 6h,i). On the other hand, the optimal schedule violates the prod-

uct purity constraints (Figure 6a,c), although all steady-state optimiza-

tion problems used as basis for the optimal scheduling have been

solved to convergence and were feasible. This shows that

quasistationary scheduling is not enough in our case, where the process

dynamics are slow and have to be taken into account for the operation.

Clearly, more advanced scheduling approaches than the one used here

or the combination of scheduling and tracking controllers could also be

used for the process operation task which could increase the perfor-

mance. However, while the combination of scheduling and tracking

may improve the constraint violation it would also reduce the economic

improvement obtained by the deterministic global solution of the

scheduling problem.

7.3 | eNMPC process operation

The trajectories of the eNMPC operation are shown by the solid lines

in the Figures 4–7. The electricity cost for the closed-loop operation

for the 2 days of the simulation is 28,000 € and the amount of liquid

product is 27.7 × 106 mol (Table 3). We see that, similar to the bench-

mark operation, the main contribution to the process power usage is

due to the electricity demand of the RC, followed by the MC, and by

the FC (Figure 4a). This is due to the high recycle stream (Figure 5g).

The fluctuations of the power usage of the overall process (Figure 4a),

results primarily from the fluctuations of the RC (Figure 4d). The cost

(a) (b) (c) (d)

(e) (f) (g) (h)

F IGURE 7 Control variable profiles. Optimal constant benchmark operation profiles dashed. eNMPC operation profiles solid. Quasistationary
scheduling dash-dotted. Bounds dotted. (a) Molar stream of main feed air. (b) Liquid assist operation flowrate. (c) Split factor of the splitter SCGN.
Lower split factor increases the GN stream. (d) Split factor of the LP column. Higher split factor increases the liquid stream withdrawn from first
stage of the column. (e) Split factor of the splitter SHPC. Higher split factor increases the stream sent to the integrated reboiler condenser RC. (f)
Split factor of the splitter SRB. Higher split factor increases the reflux to the high pressure column HPC. (g) Split factor of the splitter SL1. Higher
split factor increases the stream sent to the warm heat exchanger WHX. (h) Split factor of the splitter SL2. Higher split factor increases the stream
sent to the cold expansion turbine CT. eNMPC, economic model predictive control [Color figure can be viewed at wileyonlinelibrary.com]
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profile (Figure 6g), is the product of the electricity price (Figure 3a),

and of the process power usage (Figure 4a). The slope of the cost pro-

file is close to zero during the first time interval due to the low elec-

tricity price and significantly increases from about 6 to 12 hr, due to

the high power usage. This is an intuitive behavior; the production

rate is increased when the electricity price is low. The slope of the

cost profile then decreases from 12 to about 18 hr, when the electric-

ity price is high.

The control variables are within their bounds (Figure 7). The feed

air streams varies in its full range, from the upper bound to the lower

bound (Figure 7a). It is at its upper bound, when the electricity price is

low, and decreases, when the electricity price increases. The liquid

assist operation is active from about 14 hr to about 34 hr. It increases

with increasing electricity prices and decreases otherwise. This is as

expected as the RC stream of the liquefication cycle is reduced when

the electricity price is high due to the high power usage of the

RC. However, there is a positive tank feed stream at the same time

when the liquid assist operation is active so that the effect of the liq-

uid assist operation is lower then Figure 7b indicates. The net STN

feed stream, that is, the difference of the feed stream and the liquid

assist stream, is shown in Figure 5h. There is a negative stream, that

is, liquid nitrogen is withdrawn from the STN, from about 16 to 20 hr,

which is the time when the electricity price has is high. Outside of this

time frame, the net stream is always positive, such that the tank is

loaded. From this observation, we conclude, that liquid assist opera-

tion is actually activated only in case of strong electricity price fluctua-

tions when the liquefication cycle activity is reduced. The split factor

ξHP2 (Figure 7f), is at the lower bound most of the time, except

between about 12 and 20 hr, that is, when the electricity price has is

highest peak. A higher split factor increases the reflux to the HP and

reduces the feed stream from the IRC via SC1 to the LPC. All other

control variable profiles vary within their bounds with fluctuations in

similar accordance to the electricity prices fluctuations.

Figure 6 shows selected state variable profiles. The product purities

are satisfied at all times (Figure 6a,c). The tank profiles (Figure 6b,d), are

intuitive; the tanks are loaded, when the electricity price is low and

unloaded otherwise. The vapor fraction decreases, when the electricity

price increases and increases otherwise (Figure 6e), that is, the liquid

fraction of the CET increases, when the electricity price increases, and

is maximum, when the electricity price is maximum. The CET inlet pres-

sure/WB outlet pressure is at the upper bound most of the time and is

reduced, when the electricity price has high peaks (Figure 6f). The tem-

perature difference of the CHX is at its lower bound most of the time

(Figure 6h). The lower bound is violated sometimes. However, the tem-

perature difference is always positive so that physical model behavior is

ensured. For the guaranteed path-constraint satisfaction, methods like

published by Fu et al53 are available. The IRC temperature difference

constraint (Figure 6i), is satisfied. The use of a physical model allows to

draw conclusions about further process improvements; the relaxation

of the constraints regarding the minimum temperature difference in the

heat exchanger, liquid fraction in the cold expansion turbine, and the

maximum warm booster pressure could further improve the process

economics.

Figure 5 shows selected stream variable profiles. We see that the

STN and STO are feed streams are high, when the electricity price is

low and low otherwise (Figure 5a,b). LIN is withdrawn from the STN

and recycled to the process by liquid assist operation when the elec-

tricity price is maximum (Figure 5h). The liquefication cycle activity is

reduced when the electricity price increases and the activity is

increased otherwise (Figure 5e,f). The recycle stream (Figure 5g), fluc-

tuates according to the electricity price profile, as the stream directly

corresponds to the RC power usage, which has the highest contribu-

tion among all compressors to the process power usage.

The average CPU time for the solution of the dynamic optimiza-

tion problems of the eNMPC is 1,136 s, with a standard deviation of

673 s, a minimum CPU time of 356 s, and a maximum CPU time of

3,363 s. The CPU times imply that the method applied in this work is

not yet real-time applicable. However, the CPU times can be drasti-

cally reduced by using model reduction54-56 or by applying different

control architectures, for example, a two-layer architecture57 where

fast dynamics are treated using a fast neighboring extremal controller

at the first level. Also modifications on the algorithm and implementa-

tion, such as the use of parallel programming, for example,58,59 can

further reduce computational times.

7.4 | Comparison of process operation approaches

Comparing the eNMPC and the optimal constant process operation,

we see that the eNMPC leads to an improvement in the specific oper-

ational cost of 13.96% (Table 3). The eNMPC operation produces

more product and achieves, in addition, less operating cost. Due to

the 12 hr control horizon, the eNMPC accounts for the electricity

price fluctuations for the 48 hr in the closed-loop simulation time

horizon. Thus, it is economically beneficial to overproduce liquid oxy-

gen and nitrogen to be used later. From the cost profile (Figure 6g),

we see that the eNMPC operation is more expensive until about

14 hr. Then, the two profiles intersect and the eNMPC is cheaper for

the remainder of the time. If the profiles converge, the eNMPC opera-

tion becomes more expensive than the benchmark operation and

cheaper, if the profiles diverge. The power usage and the contribu-

tions to the power usage of the eNMPC operation fluctuate around

the benchmark operation (Figure 4a–d). The eNMPC power usage is

higher than the optimal constant benchmark operation power usage,

when the electricity price is low and lower otherwise.

Most control variables vary around the steady-state benchmark

operation profiles, for example, Figure 7a. The split factors ξHP1 and

ξHP2 do not vary around the steady-state benchmark operation pro-

files but reach levels different from the benchmark operation profiles.

The tank profile differences illustrate the economic efficiency of the

eNMPC operation as compared to the optimal constant benchmark

operation (Figure 6b,d). The eNMPC operation tank profiles are higher

most of the time. The waste streams _nCGN of the eNMPC operation

varies around the corresponding benchmark operation profile

(Figure 5c). The waste streams _nGN of the eNMPC operation is higher

than benchmark operation profile most of the time (Figure 5d).
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In addition, we compare the eNMPC operation to the optimal

scheduling operation defined by (2). The optimal schedule operation

has an improvement of 15.3% with respect to the constant production

benchmark. The economic performance of the optimal scheduling is

about 1.5% better than the eNMPC performance. There are strong

similarities between the profiles of the optimal scheduling operation

and the eNMPC operation in all profiles. Although the eNMPC con-

siders a time horizon of only 12 hr and uses local optimization methods,

the control variable profiles are very similar to the profiles obtained by

the optimal scheduling, which in contrast considers the complete 2 days

as time horizon and uses deterministic global optimization methods

(Figure 7). The process power usage of the scheduling operation is

higher than the eNMPC operation when the electricity price is low and

vice versa (Figure 4a). The optimal scheduling operation uses the liquid

assist operation more extensively than the eNMPC (Figure 5h). Further-

more, the liquefication cycle is operated more extensively by the sched-

uling operation (Figure 5e–g). The scheduling operation uses the STN

more extensively and the STO more moderately than the eNMPC

(Figure 6b,d). The electricity cost profiles of the optimal scheduling and

the eNMPC are very close to each other (Figure 3a); the eNMPC is

more expensive during the first 20 hr and from about 36 hr

on. However, in contrast to the eNMPC, the optimal scheduling opera-

tion violates the product purity constraints and produces less LIN and

LOX (Figure 6a–d). This may result from the fact that the scheduling

problem is not executed on a moving horizon; it is just calculated offline

and the dynamic process model is then simulated with the resulting

control variable profiles in an open-loop. On the other hand, the sched-

uling problem was solved globally, whereas we have no guarantee that

the eNMPC is solved globally. Deterministic global optimization is,

however, currently not applicable for large-scale dynamic optimization

problems. Further, the scheduling benchmark is based on steady-state

optimizations and we know that, under certain assumptions, the opti-

mal dynamic operations outperforms the best steady-state and even

the best cyclic steady-state.25,27 This makes it very difficult to analyze

accurately where the differences in the performance of the optimal

scheduling and the eNMPC result from.

In the scheduling approach we are restricted to interpolation and

our results show that both scheduling and eNMPC use the full range

of the control variables, so that increasing the control variable ranges

would require to generate new steady-state optimization data and

new surrogate models for optimization. This is a drawback of using a

data-driven surrogate model.

8 | CONCLUSION

ASUs are electricity intensive processes and thus well-suited for

demand side management by varying the process control variable pro-

files on a time scale of minutes to several hours. eNMPC integrates

the operation layers of scheduling and control and can in turn be used

to apply DSM measures online. We apply economic model predictive

control without terminal constraints to a large-scale air separation unit

with an integrated liquefication cycle and liquid assist operation that

we presented in the first part of the article.

We use a mechanistic model of the process and formulate an eco-

nomic model predictive control problem. To solve the resulting large-

scale dynamic optimization problem, we use direct single-shooting.

Using this approach, we perform a closed-loop in silico case-study

over 2 days including fluctuating electricity price profiles and inlet air

temperature disturbances.

The economic model predictive controller achieves an economic

improvement of about 14% with respect to the optimal constant opera-

tion benchmark while satisfying tight product purity constraints. Addi-

tionally, the eNMPC operation performance is slightly worse than the

optimal quasistationary scheduling operation, which has been solved

using a global deterministic solver. The control variable profiles of the

eNMPC operation and the scheduling operation are very similar. How-

ever, in contrast to the eNNPC operation, the optimal quasistationary

scheduling operation violates the product purity constraints. While the

optimal quasistationary scheduling operation can be use to estimate

the benefit of flexible operation, eNMPC allows to actual control the

process flexibly. Although the eNMPC optimizes on the shorter time

horizon than the optimal scheduling and uses local instead of global

optimization, it achieves nearly identical control variable profiles and

performance. Further, eNMPC enables to use the actual dynamic pro-

cess model to be optimized, instead of surrogates, and thus allows to

consider the actual process dynamic and to access all process model

variables as constraints. In combination with a mechanistic model,

eNMPC thus enables to optimize the actual physical model with the

ability to extrapolate. On the other hand, eNMPC requires the applica-

tion of computationally intensive methods for dynamic optimization,

which are currently restricted to methods for local optimization. The

use of global deterministic methods is currently restricted to small sys-

tems. In addition, the eNMPC trajectories are already very close to the

trajectories of the optimal schedule, although they have been solved

using local optimization. We show that the flexible operation of air sep-

aration units with integrated liquefication cycle and liquid assist opera-

tion under today's electricity prices offers significant economic

improvements. The savings with respect to the constant operation

result are primarily due to the flexible operation of the liquefier recycle

compressor. The CPU times for solving the controller problem do not

yet allow the method to be real-time applicable. The CPU time depends

on the control and prediction horizon of the eNMPC, and on the dis-

cretization of the path constraints and control variables. We use a

coarse discretization for the control variables during the control horizon

to reduce the CPU times for the solution of the eNMPC problems and

a shorter sampling time to increase the control variable flexibility and

reduce the controller reaction time. Despite the horizon length of 12 hr

for the control and prediction horizon, we obtain profiles which clearly

reflect the electricity price of the day ahead market with its daily fluctu-

ations. Furthermore, the control variable profiles of the eNMPC admits

strong similarities with the scheduling operation although the latter

considers the complete time horizon of 2 days, whereas the eNMPC

considers a 12 hr horizon.
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Further work should focus on reducing the computational demand

for solving the eNMPC problem, for example, using SQP method with

exact Hessians, control architectures with neighboring extremal fast-

updates, model reduction techniques, and improvements of the algo-

rithm and the implementation. The use of reduced models will intro-

duce plant model mismatch, so that further work has to apply state

estimation techniques, which may lead to further computational delay

and uncertainties regarding the initial state. In addition, different elec-

tricity price scenarios can be used in future works to assess, when the

liquefication cycle will be used more extensively. Further work should

additionally integrate the eNMPC framework with a planning layer to

provide optimal production rates for nitrogen and oxygen product to

achieve a flexible production with respect to several days up to

months. A detailed comparison of optimal scheduling with lower level

tracking controller and eNMPC, that is, top-down with bottom-up

approach is additionally left for future work. Finally, there are no rig-

orous tuning criteria for economic model predictive control, which

would be a great enrichment and challenging work for the future.
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