001     877457
005     20240709081910.0
024 7 _ |a 10.1016/j.compchemeng.2019.02.011
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a WOS:000461465600010
|2 WOS
037 _ _ |a FZJ-2020-02210
082 _ _ |a 660
100 1 _ |a Sass, Susanne
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Optimal operation of dynamic (energy) systems: When are quasi-steady models adequate?
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591707900_25682
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since design optimization faces the challenge of solving inherently large optimization problems, the complexity of underlying dynamic systems is often reduced by applying quasi-steady state assumptions. It is thereby indispensable to identify the components whose transient behavior is essential to ensure meaningful results. In this study, we discuss a dynamic model for an illustrative hybrid energy system, which extends the quasi-steady models of Voll et al. (2013). Based on optimal operation with fixed design, we underline the importance of the relationship between the dynamics of the model and of the input data for the adequateness of quasi-steady operation. Our results emphasize the need for suitable ramp constraints in quasi-steady models of dynamic systems within operational optimization. Moreover, the existence of a storage unit is no sufficient justification for quasi-steady state assumptions.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
536 _ _ |a ES2050 - Energie Sytem 2050 (ES2050)
|0 G:(DE-HGF)ES2050
|c ES2050
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2019.02.011
|g Vol. 124, p. 133 - 139
|0 PERI:(DE-600)1499971-7
|p 133 - 139
|t Computers & chemical engineering
|v 124
|y 2019
|x 0098-1354
909 C O |o oai:juser.fz-juelich.de:877457
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21