000877458 001__ 877458
000877458 005__ 20240712112910.0
000877458 0247_ $$2doi$$a10.1021/acs.iecr.8b05577
000877458 0247_ $$2ISSN$$a0019-7866
000877458 0247_ $$2ISSN$$a0095-9014
000877458 0247_ $$2ISSN$$a0888-5885
000877458 0247_ $$2ISSN$$a1520-5045
000877458 0247_ $$2ISSN$$a1541-5724
000877458 0247_ $$2ISSN$$a1943-2968
000877458 0247_ $$2altmetric$$aaltmetric:57967096
000877458 0247_ $$2WOS$$aWOS:000464769200023
000877458 037__ $$aFZJ-2020-02211
000877458 082__ $$a660
000877458 1001_ $$0P:(DE-HGF)0$$aBurre, Jannik$$b0
000877458 245__ $$aProduction of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME 3–5
000877458 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2019
000877458 3367_ $$2DRIVER$$aarticle
000877458 3367_ $$2DataCite$$aOutput Types/Journal article
000877458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592229733_31295
000877458 3367_ $$2BibTeX$$aARTICLE
000877458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877458 3367_ $$00$$2EndNote$$aJournal Article
000877458 520__ $$aOxymethylene dimethyl ethers (OMEn) have high potential as diesel fuels or blending components due to their promising combustion properties and can be produced from hydrogen (H2) and carbon dioxide (CO2) by combining existing process concepts. However, such a process chain has not been analyzed in detail yet, so its performance and bottlenecks are unknown. In this second part of our two-part article, we analyze a process chain for production of the longer chain variant OME3–5 from renewable H2 and green CO2 via trioxane and OME1. We simulate in Aspen Plus using detailed thermodynamic models with coupled oligomerization reactions and rigorous unit operation models. The overall exergy efficiency of OME3–5 production from H2 and CO2 using established process concepts is 53%. Therein, the trioxane process step has the highest losses due to its high heat demand. Considering a pinch-based heat integration throughout the entire process chain its total heat demand can be reduced by 16%. Thus, the exergy efficiency increases to 54%. This is still significantly lower compared to the production of other alternative fuels like OME1, methane, and dimethyl ether. Thus, more efficient processes, e.g., by avoiding trioxane production, are required
000877458 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877458 588__ $$aDataset connected to CrossRef
000877458 7001_ $$0P:(DE-HGF)0$$aBongartz, Dominik$$b1
000877458 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$eCorresponding author$$ufzj
000877458 773__ $$0PERI:(DE-600)1484436-9$$a10.1021/acs.iecr.8b05577$$gVol. 58, no. 14, p. 5567 - 5578$$n14$$p5567 - 5578$$tIndustrial & engineering chemistry research$$v58$$x0888-5885$$y2019
000877458 8564_ $$uhttps://juser.fz-juelich.de/record/877458/files/acs.iecr.8b05577.pdf$$yRestricted
000877458 8564_ $$uhttps://juser.fz-juelich.de/record/877458/files/acs.iecr.8b05577.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877458 909CO $$ooai:juser.fz-juelich.de:877458$$pVDB
000877458 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877458 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000877458 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000877458 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877458 9141_ $$y2020
000877458 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000877458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000877458 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000877458 920__ $$lyes
000877458 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877458 980__ $$ajournal
000877458 980__ $$aVDB
000877458 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877458 980__ $$aUNRESTRICTED
000877458 981__ $$aI:(DE-Juel1)ICE-1-20170217