001     877458
005     20240712112910.0
024 7 _ |a 10.1021/acs.iecr.8b05577
|2 doi
024 7 _ |a 0019-7866
|2 ISSN
024 7 _ |a 0095-9014
|2 ISSN
024 7 _ |a 0888-5885
|2 ISSN
024 7 _ |a 1520-5045
|2 ISSN
024 7 _ |a 1541-5724
|2 ISSN
024 7 _ |a 1943-2968
|2 ISSN
024 7 _ |a altmetric:57967096
|2 altmetric
024 7 _ |a WOS:000464769200023
|2 WOS
037 _ _ |a FZJ-2020-02211
082 _ _ |a 660
100 1 _ |a Burre, Jannik
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME 3–5
260 _ _ |a Columbus, Ohio
|c 2019
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1592229733_31295
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxymethylene dimethyl ethers (OMEn) have high potential as diesel fuels or blending components due to their promising combustion properties and can be produced from hydrogen (H2) and carbon dioxide (CO2) by combining existing process concepts. However, such a process chain has not been analyzed in detail yet, so its performance and bottlenecks are unknown. In this second part of our two-part article, we analyze a process chain for production of the longer chain variant OME3–5 from renewable H2 and green CO2 via trioxane and OME1. We simulate in Aspen Plus using detailed thermodynamic models with coupled oligomerization reactions and rigorous unit operation models. The overall exergy efficiency of OME3–5 production from H2 and CO2 using established process concepts is 53%. Therein, the trioxane process step has the highest losses due to its high heat demand. Considering a pinch-based heat integration throughout the entire process chain its total heat demand can be reduced by 16%. Thus, the exergy efficiency increases to 54%. This is still significantly lower compared to the production of other alternative fuels like OME1, methane, and dimethyl ether. Thus, more efficient processes, e.g., by avoiding trioxane production, are required
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bongartz, Dominik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.iecr.8b05577
|g Vol. 58, no. 14, p. 5567 - 5578
|0 PERI:(DE-600)1484436-9
|n 14
|p 5567 - 5578
|t Industrial & engineering chemistry research
|v 58
|y 2019
|x 0888-5885
856 4 _ |u https://juser.fz-juelich.de/record/877458/files/acs.iecr.8b05577.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/877458/files/acs.iecr.8b05577.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:877458
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21