| Home > Publications database > Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME 1 > print |
| 001 | 877459 | ||
| 005 | 20240709081910.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.iecr.8b05576 |2 doi |
| 024 | 7 | _ | |a 0019-7866 |2 ISSN |
| 024 | 7 | _ | |a 0095-9014 |2 ISSN |
| 024 | 7 | _ | |a 0888-5885 |2 ISSN |
| 024 | 7 | _ | |a 1520-5045 |2 ISSN |
| 024 | 7 | _ | |a 1541-5724 |2 ISSN |
| 024 | 7 | _ | |a 1943-2968 |2 ISSN |
| 024 | 7 | _ | |a altmetric:56928159 |2 altmetric |
| 024 | 7 | _ | |a WOS:000462951000017 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02212 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Bongartz, Dominik |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME 1 |
| 260 | _ | _ | |a Columbus, Ohio |c 2019 |b American Chemical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1591711272_23745 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Oxymethylene dimethyl ethers (OMEn) are potential compression ignition fuels or blend components that enable drastic reductions in pollutant formation. By combining multiple conversion steps, OMEn can be produced from carbon dioxide (CO2) and hydrogen (H2) and hence from renewable electricity. However, established processes for OMEn production are challenging to model and detailed analyses of OMEn production from H2 and CO2 are not yet available in the open literature. In the first part of our two-part article, state-of-the-art models for the formaldehyde-containing mixtures involved in OMEn production are implemented in AspenPlus and used to analyze a process chain for production of OME1 from H2 and CO2 via methanol and aqueous formaldehyde solution. The exergy efficiency of the process chain is 73%. Tailored processes aiming at improved heat and mass integration as well as novel synthesis routes leading to reduced process complexity or avoiding oxidative intermediate steps hold significant promise for future efficiency improvements. |
| 536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Burre, Jannik |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 2 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1021/acs.iecr.8b05576 |g Vol. 58, no. 12, p. 4881 - 4889 |0 PERI:(DE-600)1484436-9 |n 12 |p 4881 - 4889 |t Industrial & engineering chemistry research |v 58 |y 2019 |x 0888-5885 |
| 909 | C | O | |o oai:juser.fz-juelich.de:877459 |p VDB |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172025 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)172025 |
| 913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-12 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-12 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-12 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|