001     877460
005     20240709081910.0
024 7 _ |a 10.1016/j.energy.2018.12.048
|2 doi
024 7 _ |a 0360-5442
|2 ISSN
024 7 _ |a 1873-6785
|2 ISSN
024 7 _ |a WOS:000459528500096
|2 WOS
037 _ _ |a FZJ-2020-02213
082 _ _ |a 600
100 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Analysis and improvement of dynamic heat exchanger models for nominal and start-up operation
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591712255_23279
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For control-oriented modeling of heat exchangers, the two predominant model types are the moving boundary (MB) approach and the finite volume (FV) method. In this contribution, we assess both approaches. As a case study, we present an organic Rankine cycle (ORC) for waste heat recovery (WHR), for which experimental data is available. For simulation of nominal operation, we observe that the MB approach requires less CPU time than the FV method, even for a low number of cells, which is in agreement with literature. In the start-up case, where only subcooled liquid is present, analysis of the MB model reveals that the model can exhibit an unphysical inverse response in outlet enthalpy due to its averaging assumption. This problem can be circumvented via the use of a hybrid MB-FV model or an adjusted averaging assumption. A simulation study based on experimental data shows that both proposed solution approaches can be successfully employed.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huster, Wolfgang R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Holtorf, Flemming
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.energy.2018.12.048
|g Vol. 169, p. 1191 - 1201
|0 PERI:(DE-600)2019804-8
|p 1191 - 1201
|t Energy
|v 169
|y 2019
|x 0360-5442
909 C O |o oai:juser.fz-juelich.de:877460
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERGY : 2018
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21