| Hauptseite > Workflowsammlungen > Publikationsgebühren > In situ investigation of atmospheric plasma-sprayed Mn–Co–Fe–O by synchrotron X-ray nano-tomography > print |
| 001 | 877477 | ||
| 005 | 20240711085648.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1007/s10853-020-04916-9 |
| 024 | 7 | _ | |2 Handle |a 2128/25237 |
| 024 | 7 | _ | |a WOS:000541330200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02230 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |0 P:(DE-Juel1)165868 |a Grünwald, Nikolas |b 0 |e Corresponding author |
| 245 | _ | _ | |a In situ investigation of atmospheric plasma-sprayed Mn–Co–Fe–O by synchrotron X-ray nano-tomography |
| 260 | _ | _ | |a Dordrecht [u.a.] |b Springer Science + Business Media B.V |c 2020 |
| 336 | 7 | _ | |2 DRIVER |a article |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1594117491_24596 |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 520 | _ | _ | |a Applying atmospherically plasma-sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective coatings on interconnector steels minimized the chromium-related degradation within solid oxide fuel cell stack-tests successfully. Post-test characterization of the coatings disclosed a severe microstructural and phase evolution. A self-healing of micro-cracks, the formation and agglomeration of small pores, the occurrence of a dense spinel layer at the surface and a strong elemental de-mixing were reported in ex situ experiments. In the present publication, we prove for the first time these mechanisms by tracking the microstructure in situ at a single APS coating using synchrotron X-ray nano-tomography at the European Synchrotron Radiation Facility. Therefore, a 100-µm-long cylindrical sample with a diameter of 123 µm was cut from an APS-MCF free-standing layer and measured within a high-temperature furnace. All microstructural changes mentioned above could be verified. Porosity measurements reveal a decrease in the porosity from 9 to 3% during the annealing, which is in good accordance with the literature. Additionally, a partial detachment of an approximately 5-µm-thick layer at the sample surface is observed. The layer is dense and does not exhibit any cracks which are penetrating the layer. This kind of shell is assumed to be gastight and thus protecting the bulk from further oxidation. |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-113 |a 113 - Methods and Concepts for Material Development (POF3-113) |c POF3-113 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-135 |a 135 - Fuel Cells (POF3-135) |c POF3-135 |f POF III |x 1 |
| 536 | _ | _ | |0 G:(DE-Juel1)SOFC-20140602 |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602) |c SOFC-20140602 |f SOFC |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lhuissier, Pierre |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Salvo, Luc |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Villanova, Julie |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)129636 |a Menzler, Norbert H. |b 4 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)161591 |a Guillon, Olivier |b 5 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Martin, Christophe L. |b 6 |
| 700 | 1 | _ | |0 P:(DE-Juel1)129670 |a Vaßen, Robert |b 7 |u fzj |
| 773 | _ | _ | |0 PERI:(DE-600)2015305-3 |a 10.1007/s10853-020-04916-9 |p 12725-12736 |t Journal of materials science |v 55 |x 0022-2461 |y 2020 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877477/files/Gr%C3%BCnwald2020_Article_InSituInvestigationOfAtmospher.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877477/files/Gr%C3%BCnwald2020_Article_InSituInvestigationOfAtmospher.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:877477 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165868 |a Forschungszentrum Jülich |b 0 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129636 |a Forschungszentrum Jülich |b 4 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161591 |a Forschungszentrum Jülich |b 5 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129670 |a Forschungszentrum Jülich |b 7 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF3-113 |1 G:(DE-HGF)POF3-110 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 913 | 1 | _ | |0 G:(DE-HGF)POF3-135 |1 G:(DE-HGF)POF3-130 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Speicher und vernetzte Infrastrukturen |v Fuel Cells |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1230 |2 StatID |a DBCoverage |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-16 |
| 915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b J MATER SCI : 2018 |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)3002 |2 StatID |a DEAL Springer |d 2020-01-16 |w ger |
| 915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2020-01-16 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2020-01-16 |w ger |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2020-01-16 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|