000877487 001__ 877487
000877487 005__ 20230310131341.0
000877487 0247_ $$2doi$$a10.1016/j.cpc.2020.107363
000877487 0247_ $$2ISSN$$a0010-4655
000877487 0247_ $$2ISSN$$a1386-9485
000877487 0247_ $$2ISSN$$a1879-2944
000877487 0247_ $$2Handle$$a2128/25056
000877487 0247_ $$2altmetric$$aaltmetric:83471436
000877487 0247_ $$2WOS$$aWOS:000541251400012
000877487 037__ $$aFZJ-2020-02239
000877487 082__ $$a530
000877487 1001_ $$0P:(DE-Juel1)174446$$aRittich, Hannah$$b0$$eCorresponding author
000877487 245__ $$aTime-parallel simulation of the Schrödinger Equation
000877487 260__ $$bElsevier$$c2020
000877487 3367_ $$2DRIVER$$aarticle
000877487 3367_ $$2DataCite$$aOutput Types/Journal article
000877487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592212274_31297
000877487 3367_ $$2BibTeX$$aARTICLE
000877487 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877487 3367_ $$00$$2EndNote$$aJournal Article
000877487 520__ $$aThe numerical simulation of the time-dependent Schrödinger equation for quantum systems is a very active research topic. Yet, resolving the solution sufficiently in space and time is challenging and mandates the use of modern high-performance computing systems. While classical parallelization techniques in space can reduce the runtime per time step, novel parallel-in-time integrators expose parallelism in the temporal domain. They work, however, not very well for wave-type problems such as the Schrödinger equation. One notable exception is the rational approximation of exponential integrators. In this paper we derive an efficient variant of this approach suitable for the complex-valued Schrödinger equation. Using the Faber–Carathéodory–Fejér approximation, this variant is already a fast serial and in particular an efficient time-parallel integrator. It can be used to augment classical parallelization in space and we show the efficiency and effectiveness of our method along the lines of two challenging, realistic examples.
000877487 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000877487 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000877487 588__ $$aDataset connected to CrossRef
000877487 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b1
000877487 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2020.107363$$gVol. 255, p. 107363 -$$p107363 -$$tComputer physics communications$$v255$$x0010-4655$$y2020
000877487 8564_ $$uhttps://juser.fz-juelich.de/record/877487/files/Published%20Article-1.pdf
000877487 8564_ $$uhttps://juser.fz-juelich.de/record/877487/files/Accepted%20Manuscript.pdf$$yOpenAccess
000877487 8564_ $$uhttps://juser.fz-juelich.de/record/877487/files/Accepted%20Manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877487 8564_ $$uhttps://juser.fz-juelich.de/record/877487/files/Published%20Article-1.pdf?subformat=pdfa$$xpdfa
000877487 909CO $$ooai:juser.fz-juelich.de:877487$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174446$$aForschungszentrum Jülich$$b0$$kFZJ
000877487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b1$$kFZJ
000877487 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000877487 9141_ $$y2020
000877487 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877487 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2018$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000877487 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-15$$wger
000877487 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000877487 920__ $$lyes
000877487 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877487 980__ $$ajournal
000877487 980__ $$aVDB
000877487 980__ $$aUNRESTRICTED
000877487 980__ $$aI:(DE-Juel1)JSC-20090406
000877487 9801_ $$aFullTexts