001 | 877487 | ||
005 | 20230310131341.0 | ||
024 | 7 | _ | |a 10.1016/j.cpc.2020.107363 |2 doi |
024 | 7 | _ | |a 0010-4655 |2 ISSN |
024 | 7 | _ | |a 1386-9485 |2 ISSN |
024 | 7 | _ | |a 1879-2944 |2 ISSN |
024 | 7 | _ | |a 2128/25056 |2 Handle |
024 | 7 | _ | |a altmetric:83471436 |2 altmetric |
024 | 7 | _ | |a WOS:000541251400012 |2 WOS |
037 | _ | _ | |a FZJ-2020-02239 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rittich, Hannah |0 P:(DE-Juel1)174446 |b 0 |e Corresponding author |
245 | _ | _ | |a Time-parallel simulation of the Schrödinger Equation |
260 | _ | _ | |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1592212274_31297 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The numerical simulation of the time-dependent Schrödinger equation for quantum systems is a very active research topic. Yet, resolving the solution sufficiently in space and time is challenging and mandates the use of modern high-performance computing systems. While classical parallelization techniques in space can reduce the runtime per time step, novel parallel-in-time integrators expose parallelism in the temporal domain. They work, however, not very well for wave-type problems such as the Schrödinger equation. One notable exception is the rational approximation of exponential integrators. In this paper we derive an efficient variant of this approach suitable for the complex-valued Schrödinger equation. Using the Faber–Carathéodory–Fejér approximation, this variant is already a fast serial and in particular an efficient time-parallel integrator. It can be used to augment classical parallelization in space and we show the efficiency and effectiveness of our method along the lines of two challenging, realistic examples. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |x 0 |f POF III |
536 | _ | _ | |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162) |0 G:(GEPRIS)450829162 |c 450829162 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Speck, Robert |0 P:(DE-Juel1)132268 |b 1 |
773 | _ | _ | |a 10.1016/j.cpc.2020.107363 |g Vol. 255, p. 107363 - |0 PERI:(DE-600)1466511-6 |p 107363 - |t Computer physics communications |v 255 |y 2020 |x 0010-4655 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877487/files/Published%20Article-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877487/files/Accepted%20Manuscript.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877487/files/Accepted%20Manuscript.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/877487/files/Published%20Article-1.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877487 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174446 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132268 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT PHYS COMMUN : 2018 |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-15 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-15 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|