001     877488
005     20220930130241.0
024 7 _ |a 10.3758/s13428-020-01428-x
|2 doi
024 7 _ |a altmetric:86428604
|2 altmetric
024 7 _ |a pmid:32710238
|2 pmid
024 7 _ |a WOS:000552180600001
|2 WOS
037 _ _ |a FZJ-2020-02240
082 _ _ |a 150
100 1 _ |0 P:(DE-HGF)0
|a Dar, Asim H.
|b 0
245 _ _ |a REMoDNaV: robust eye-movement classification for dynamic stimulation
260 _ _ |a Austin, Tex.
|b Psychonomic Society Publ.
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1596525782_9645
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.
536 _ _ |0 G:(DE-HGF)POF3-574
|a 574 - Theory, modelling and simulation (POF3-574)
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)178612
|a Wagner, Adina S.
|b 1
700 1 _ |0 P:(DE-Juel1)177087
|a Hanke, Michael
|b 2
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2212635-1
|a 10.3758/s13428-020-01428-x
|p 1-16
|t Behavior research methods
|v 52
|x 0005-7878
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/877488/files/Dar2020_Article_REMoDNaVRobustEye-movementClas.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/877488/files/Dar2020_Article_REMoDNaVRobustEye-movementClas.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:877488
|p OpenAPC_DEAL
|p VDB
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)178612
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177087
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BEHAV RES METHODS : 2017
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0130
|2 StatID
|a DBCoverage
|b Social Sciences Citation Index
915 _ _ |0 StatID:(DE-HGF)1180
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21