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1. Motivation

The scanning tunneling microscopy (STM) experiments of
Crommie et al.[1] and Hasegawa and Avouris,[2] revealing stand-
ing density waves of the Cu(111) and Au(111) surface-state
electrons near defects, have pioneered a very powerful, direct
method of imaging the surface electron liquid of metals.
Together with scanning tunneling spectroscopy (STS), the
method gives unique insight on the quasiparticle interference
(QPI), scattering phase shifts, and lifetime. Especially when
augmented by the Fourier-transformed QPI map, as proposed
by Petersen et al.,[3] the method unveils scattering properties
of quasiparticles off surface defects, giving information on the

scattering vectors among points of the
band structure. In this context, Fourier-
transformed QPI maps provided one of
the first experimental proofs of the exis-
tence of topological insulators,[4] because
it revealed the “absence” of intensity at
back-scattering vectors, just as predicted
by theory.

From a theoretical point of view, the
calculation of QPI maps has been
largely based on model methods, e.g., on
topological insulator surfaces,[5] where the
surface band structure can be approxi-
mated by simple model Hamiltonians. In
general, however, density-functional-based
methods are necessitated for a realistic
description of the surface electronic
structure and in particular of the impurity

potential, where the charge relaxation around the impurity
plays a major role in the correct description of the scattering
phase shifts. A difficulty in density-functional calculations
is that the density oscillations induced by the defect are very
long-ranged, reaching tens or even hundreds of nanometers,
so that supercell methods cannot practically reach this limit.
These challenges can only be met by ab initio Green func-
tion embedding methods, like the Korringa–Kohn–Rostoker
(KKR) method.

As an example of an application, we refer to the calculations
by Lounis et al.[6] of QPI on Cu(111) and Cu(001) surfaces due to
an isolated impurity buried under the surface. These results
show that ab initio calculations of QPI maps over quite large
surface areas are feasible with Green function techniques.
However, in the case of Fourier-transformed QPI map, it is
practical to express the result directly by a convolution of
Green functions,[7] avoiding the intermediate step of calculating
the real-space map in a large surface area.

In this article, we approach this problem and give applica-
tions in the field of topological insulators. In Section 2, we
outline the formalism for real-space and Fourier-transformed
QPI maps within the KKR method. Furthermore, we discuss
the Fourier-transformed QPI for the practical case of multiple
impurities and argue that the many-impurity problem is well
approximated by the single-impurity result. We also discuss
the extended joint density of states approach (exJDOS). In
Section 3, we apply our formalism on the topological insulator
Bi2Te3 with surface impurities. This is implemented in the
JuKKR code package.[8] Finally, we conclude with a summary
in Section 4.
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The quasiparticle interference (QPI) technique is a powerful tool that allows
to uncover the structure and properties of electronic structure of a material
combined with scattering properties of defects at surfaces. Recently, this
technique has been pivotal in proving the unique properties of the surface
state of topological insulators which manifests itself in the absence of
backscattering. Herein, a Green function-based formalism is derived for the
ab initio computation of Fourier-transformed QPI images. The efficiency of
the new implementation is shown at the examples of QPI that forms around
magnetic and nonmagnetic defects at the Bi2Te3 surface. This method allows
a deepened understanding of the scattering properties of topologically pro-
tected electrons off defects and is a useful tool in the study of quantum
materials in the future.
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2. Formalism

Within the Tersoff–Hamann approximation,[9] the STM differen-
tial tunneling conductivity at a bias voltage U is related to the
space- and energy-resolved density of states nðr;EÞ at energy E
and at the position r of the tip: nðr;EF þ eUÞ ∝ dI

dU ðUÞ (EF is
the Fermi level). In a QPI experiment, we are interested in
the difference of density induced by an impurity with respect
to the pristine host surface,

Δnðr; EÞ ¼ nimpðr;EÞ � nhostðr;EÞ (1)

2.1. Green Function and T -Matrix Approach

The Green function and T -matrix approach is a well-established
method of calculating the density of systems with impurities.
It has been applied to the QPI problem in ab initio and model
calculations, e.g., the studies by Lee et al., Wang and Lee, and
Guo and Franz.[5,7,10] Herein, we give the formalism in an
explicit real-space representation, because it forms the basis of
the formalism and discussion in subsequent sections.

The difference in the local density of states is connected to the
one-electron Green function of the system with impurity,
Gimpðr, r 0;EÞ, and to the one of the pristine host, Ghostðr, r 0;EÞ,
by the well-known identity

Δnðr; EÞ ¼ � 1
π
ImTr½Gimpðr, r;EÞ � Ghostðr, r;EÞ� (2)

The trace is implied with respect to spin indices; in the case of
a relativistic formalism with Dirac four-vector states, the trace
includes also the large and small components. By virtue of the
Dyson equation, Gimp �Ghost ¼ GhostΔVGimp ¼ GimpΔVGhost,
the difference in the Green function ΔG ¼ Gimp �Ghost is
written as

ΔGðr, r;EÞ ¼
Z

d3r 0
Z

d3r 00Ghostðr, r 0;EÞT ðr 0, r 00;EÞGhostðr 00, r;EÞ
(3)

in terms of the T -matrix,

T ðr 0, r 00; EÞ ¼ ΔVðr 0Þδðr 0 � r 00Þ þ ΔVðr 0ÞGimpðr 0, r 00;EÞΔVðr 00Þ
(4)

ΔV ¼ V imp � Vhost is the difference in the potential between the
impurity and host systems. The T -matrix has the advantage that
it is confined in the small region where the potential difference
does not vanish and has to be calculated only once, irrespective of
the range of r in the QPI calculation. For the calculation
of Ghost, the translational invariance of the surface allows us to
use the Bloch theorem. Decomposing the position vector as
r ¼ R þ x, where R is a lattice translation vector parallel to the
surface plane, whereas x is a vector in the primitive cell, we write

GhostðR þ x,R0 þ x0;EÞ ¼ 1
Ωrec

Z
d2kGhost

k ðx, x0;EÞeik⋅ðR�R0Þ (5)

where the Fourier-transform of the Green function obeys the
spectral representation

Ghost
k ðx, x0;EÞ ¼

X
α

ΨαkðxÞΨ†

αkðx0Þ
E � Eαk þ i0

(6)

Here, Ψαk is the host wavefunction, α is the band index,
Ωrec ¼ ð2πÞ2=Ωcryst, with Ωcryst the total crystal surface area,
and i0 represents an infinitesimal imaginary energy. The differ-
ence in Green functions, Equation (3), takes then the form

ΔGðR þ x,R þ x;EÞ

¼ 1
Ω2

rec

Z
d2k

Z
d2k0eiðk�k0Þ⋅R X

R0 ,R00

Z
R0
d3x0

�
Z
R00

d3x00e�ik⋅R0
eik

0 ⋅R00
Ghost

k ðx, x0;EÞ

� T ðR0 þ x0,R00 þ x00;EÞGhost
k0 ðx00, x;EÞ

(7)

¼ 1
Ω2

rec

Z
d2k

Z
d2k0

X
αα0

ΨαkðxÞT αkα0k0 ðEÞΨ†

α0k0 ðxÞ
ðE�Eαk þ i0ÞðE�Eαk0 þ i0Þ e

iðk�k0Þ⋅R

(8)

The sum over R0, R00 and the integration over d3x0, d3x00 is con-
fined to the sites where the T -matrix (and the impurity
perturbation ΔV ) is nonvanishing. The former expression,
Equation (7), includes phase factors e�ik⋅R0

eik
0⋅R00

for the
interlattice-site propagation of the host Green function, when
the impurity spreads over many lattice sites. The latter expres-
sion (8) is a more compact form where the matrix elements
T αkα0k0 ðEÞ ¼ ðΨαk, T ðEÞΨα0k0 Þ were introduced (note that the
summation includes all states, not just the ones at energy E).
It leads to the stationary phase approximation[6] pinning the
energy to the energy-shell E, if the observation point is far from
the impurity (jRj ! ∞).

For the Fourier-transformed QPI, we need the Fourier trans-
formation of the Green function along a surface parallel to, and at
vertical distance z from, the crystal surface:

ΔGðz; q;EÞ ¼
Z
ðzÞ

d2rΔGðr, r;EÞe�iq⋅r (9)

¼ ΩBZ

Ω2
rec

Z
ðzÞ

d2xe�iq⋅x
Z

d2k
X
R0R00

e�ik⋅R0
eiðk�qÞ⋅R00

�
Z
R0
d3x0

Z
R00

d3x00Ghost
k ðx, x0;EÞ

� T ðR0 þ x0,R00 þ x00;EÞGhost
k�qðx00, x;EÞ

(10)

In the step from (9) to (10), we used Equation (7), and we
removed lattice sum

P
R by virtue of the identity

P
R e

iðk�k0�qÞR ¼
ΩBZδðk � k0 � qÞ (ΩBZ is the surface Brillouin zone area). The
result represents the convolution of two Green functions, as
expected from the Fourier transform of their products. Using
Equation (2), we arrive at the following expression for the
Fourier transformed QPI

Δnðz; q;EÞ ¼
Z
ðzÞ

d2rnðr;EÞe�iq⋅r

¼ � 1
2iπ

Tr½ΔGðz; q;EÞ � ΔGðz;�q;EÞ*� (11)
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where it is implied that the complex conjugation operation ΔG*
is done after the Fourier transformation. This result can easily
be generalized for the spin density with σΔG in the place of ΔG
(σ is the vector of Pauli matrices).

The strongest density change measured by the STM is
induced directly “above the impurity,” i.e., at a vertical distance
z > 0 from the position where ΔV 6¼ 0. This region is often
excluded in from the Fourier transformation in experiment,[11]

otherwise the image is dominated by the transform of the
impurity shape,[12] while one seeks the scattering vectors.
In addition, the region close to the impurity is also excluded
sometimes, because it may produce spurious background effects
in the experiment.[13,14] In the calculation, the contribution of the
excluded region (indicated by Ωexcl) must be subtracted explicitly,
because the form (10) already includes a summation over all
lattice sites. Thus we define

Δn̆ðz; q;EÞ ¼ Δnðz; q;EÞ �
Z
Ωexcl

d2rnðz; q;EÞe�iq⋅r (12)

¼Δnðz;q;EÞþ 1
π
ImTr

Z
Ωexcl

d2rΔGðr, r;EÞe�iq⋅r (13)

However, as Ωexcl is finite-sized, the integration is straightfor-
ward in real space.

2.2. Expression in the KKR Formalism

In the KKR method, the Green function is expanded in site-
dependent scattering wavefunctions at sites n. The vacuum is
also described in a site-centered way by a continuation of the
lattice structure beyond the surface, with the corresponding
“empty sites” containing no atoms but a finite electron density.
We denote the general position by r ¼ X n þ x ¼ Ri þ χμ þ x,
where the combined index n ¼ ði; μÞ defines a site X n by the
lattice-vector Ri and the sub-lattice vector χμ, and where x is a
position vector in the atomic site with respect to the site center.
We use the regular, Rn

Lðx;EÞ, and irregular, Hn
Lðx;EÞ, solutions

of the scattering problem of the potential in the vicinity of the
site Rn, where L comprises angular momentum and spin
indices of the incoming wave. Rn

L and Hn
L are ð2� 1Þ column

vectors in Pauli–Schrödinger theory and ð4� 1Þ column
vectors in Dirac theory. Also, the corresponding left-hand side
solutions are required, denoted by R̄n

Lðx;EÞ and H̄n
Lðx; EÞ,

respectively, that are row vectors. The expansion breaks the
Green function down into a single-site term and a multiple
scattering term,

GðX nþx,X n0 þx0;EÞ¼
X
L

GS
n
Lðx,x0;EÞδnn0

þ
X
LL0

GM
nn0
LL0 ðx,x0;EÞ

¼�iκ
X
L

h
Rn

Lðx;EÞH̄n
Lðx0;EÞθðx0 �xÞ

þHn
Lðx;EÞR̄n

Lðx0;EÞθðx�x0Þ
i
δnn0

þ
X
LL0

Rn
Lðx;EÞGnn0

LL0 ðEÞR̄n0
L0 ðx0;EÞ

(14)

where κ ¼ ð2mEÞ1=2=ℏ in Pauli–Schrödinger theory and
κ ¼ ð2mE þ E2=c2Þ1=2=ℏ in Dirac theory. The single-site term
describes the Green function of the potential at site n embedded
in free space. It only depends on the local potential and its con-
tribution toΔG vanishes outside the impurity region. The second
term describes the multiple scattering over all sites, expressed by
the structural Green function coefficients Gnn0

LL0 ðEÞ. These form a
matrix ⟦GðEÞ⟧ that obeys an algebraic Dyson equation. This reads
for the host system

⟦Ghostðk; EÞ⟧ ¼ ⟦gðk;EÞ⟧þ ⟦gðk;EÞ⟧⟦thostðEÞ⟧⟦Ghostðk;EÞ⟧
(15)

where we have expressed everything in reciprocal space.
⟦gðk;EÞ⟧ contains the structural Green function coefficients of
free space and ⟦thostðEÞ⟧ is a site-diagonal (k-independent) matrix
containing the T -matrices of each site with respect to free space,
thost;μLL0 ðEÞ, expressed in an angular momentum and spin basis.
The lattice part of the Fourier transformation affects only the
structural Green functions ⟦Ghostðk;EÞ⟧, not the T -matrices or
local scattering solutions.

The analogon of the T -matrix in the KKR method is the
scattering path operator of the impurity with respect to the host,
⟦τðEÞ⟧. It is expressed in terms of the single-site T -matrices of
impurity and host, ΔtnLL0 ðEÞ ¼ timp;n

LL0 ðEÞ � thost;nLL0 ðEÞ, and of the
host structural Green function, by the Dyson-type equation
⟦τ⟧ ¼ ⟦Δt⟧þ ⟦Δt⟧⟦Ghost⟧⟦τ⟧. It is not site-diagonal, and has
nonvanishing elements τnn

0
LL0 ðEÞ only between sites ðn, n0Þ for

which Δtn 6¼ 0 and Δtn0 6¼ 0. The structural Green function of
the system with impurity is then expressed by

Gimpnn0
LL0 ðEÞ ¼ Ghostnn0

LL0 ðEÞ þ
X
n0 0n0 0 0

X
L0 0L0 0 0

Ghostnn0 0
LL0 0 ðEÞ τn

0 0n0 0 0
L0 0L0 0 0 ðEÞ

� Ghostn0 0 0n0
L0 0 0L0 ðEÞ

(16)

in analogy to Equation (3).
As the vacuum region is geometrically described by layers of

empty sites parallel to the crystal surface, it is convenient to
approximate the Fourier integration over a surface at distance
z by an integration over a vacuum layer of volumeΩscan, centered
at z: ∫ d2r ! P

n∈Ωscan
∫ nd

3r. Expression (10) then becomes

ΔGðq;EÞ ¼ ΔGSðq;EÞ þ ΔGMðq;EÞ, with

ΔGSðq; EÞ ¼
XΩscan∩Ωimp

jν

e�iq⋅ðRjþχνÞ
Z
jν
d3xe�iq⋅x

�
X
L

ΔGjν
S;Lðx, x;EÞ

ΔGMðq;EÞ ¼
ΩBZ

Ω2
rec

X
ν

eiq⋅χν
Z

d2k
XΩimp

iμ, i0μ0
e�ik⋅Ri e�iðk�qÞ⋅Ri0

�
X

LL0L0 0L000
Ghostνμ0

LL0 0 ðk;EÞτiμ;i
0μ0

L0 0L000 ðEÞ

� Ghostμ0ν
L000L0 ðk � q;EÞ

�
Z
ν
d3xe�iq⋅x½Rν

Lðx;EÞR̄ν
L0 ðx;EÞ�

(17)
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where we set n ¼ ðj, νÞ, ΔGjν
S;Lðx, x;EÞ ¼ Gimp;jν

S;L ðx, x;EÞ �
Ghost;jν

S;L ðx, x;EÞ is the difference of the single-site part of the
Green function between the impurity and the host system, and
is taken only in the impurity region Ωimp (it vanishes outside).
In the aforementioned expression, the terms ½Rν

Lðx;EÞR̄ν
L0 ðx; EÞ�

and ΔGiν
S;Lðx, x;EÞ are 2� 2 or 4� 4 matrices (depending if the

Pauli–Schrödinger or the Dirac theory is used) and must be
traced to form the density (Equation (2)). Conveniently, they
show no k-dependence and thus must be calculated only once
at each energy; the same is true for the matrix elements of
the scattering path operator, τiμ;i

0μ0
L0L0 0 ðEÞ. The only quantities that

need to be calculated for a dense set of k-points (which implies
a large numerical effort) are the host structural Green functions
[Equation (15)]. Fortunately, by virtue of the principal layer and
decimation techniques,[15–17] the latter can be computed with a
numerical effort that grows linearly with the number of atomic
layers in the film, making possible the accurate simulation of the
QPI in thick films (of the order of hundreds of atomic layers, if
necessary) or semi-infinite geometries.

If we wish to calculate the quantity Δn̆ðz; q; EÞ [Equation (13)],
i.e., exclude the impurity and its immediate surroundings [indi-
cated by Ωexcl in Equation (13)] from the Fourier transformation,
then Equation (17) changes. The single-site term, ΔGS, vanishes
automatically outside Ωimp. However, we must also explicitly
subtract the contribution of the multiple-scattering term in Ωexcl.
The result is given by replacing ΔGSðq;EÞ by the following
correction to the multiple scattering part

CMðq;EÞ ¼
XΩexcl

jν

e�iq⋅ðRjþχνÞ
XΩimp

iμ, i0μ0

X
LL0L00L000

Ghost jν;iμ
LL00 ðEÞτiμ,i

0μ0
L0 0L000

� Ghosti
0μ0 ;jν
L000L0 ðEÞ �

Z
iν
d3xe�iq⋅x½Rν

Lðx;EÞR̄ν
L0 ðx;EÞ�

(18)

For the calculation of the integrals ∫ νd
3xe�iq⋅x½Rν

Lðx;EÞ
R̄ν

L0 ðx;EÞ�, we expand the wavefunctions in spherical harmonics,
as is normally done in the KKR method,[18] and we do the
same for the exponential by the identity e�iq⋅x ¼ 4π

P
lm iljlðqxÞ

YlmðkÞY*lmðxÞ, where Ylm are spherical harmonics. Thus the
integral is decomposed in a spherical and an angular part.
The integrals containing irregular functions that contribute to
ΔGSLðq;EÞ are handled in an analogous way.

In summary, in the KKR method, we calculate the quantities
Δnðq;EÞ [Equation (11)] and Δn̆ðq;EÞ [Equation (13)] by

Δnðq;EÞ ¼ � 1
2iπ

Tr½ΔGMðq;EÞ � ΔGMð�q;EÞ*
þ ΔGSðq; EÞ � ΔGSð�q;EÞ*�

(19)

Δn̆ðq;EÞ ¼ Δnðq;EÞ þ 1
2iπ

Tr½CMðq;EÞ � CMð�q;EÞ*� (20)

2.3. Multiple Scattering among Impurities

The experimental QPI Fourier transform is usually performed
over a large surface area comprising many impurities. A direct
simulation of this experiment should account for the

contribution of the multiple-scattering events between impuri-
ties to the QPI. However, this is numerically expensive, as it
involves the calculation of a large T -matrix, corresponding to
the collection of all impurities in a large supercell, and perhaps
even a statistical average over many impurity configurations.
Fortunately, the Fourier-transformed QPI of a single impurity
is an excellent approximation to the result of a random impurity
distribution, simplifying the calculations. Fang et al.[19] have
shown this approximation to hold to lowest order in the potential
difference ΔV , i.e., in the Born approximation to the scattering
amplitude. Here, we argue that the approximation holds in
general, allowing for the treatment of strong, e.g., resonant,
scattering.

First, we discuss the form of the multiple-scattering T -matrix.
Let tnðEÞ be the T -matrix of a single impurity at site n and
expressed in a matrix form in a localized basis set. Then, the full
T -matrix of a collection of impurities obeys the expansion[20]

T nn0 ¼ tnδnn0 þ tnGhost
nn0 ð1� δnn0 Þtn0

þ
X

m 6¼n, n0
tnGhost

nm tmGhost
mn0 tn0 þ · · · (21)

¼ tnδnn0 þ tn
X
m

ĞnmT mn0 (22)

where the matrix Ğnm ¼ Ghost
nm ð1� δnmÞ contains the site-off-diag-

onal part of the Green function (a proof is given in the Appendix).
The aforementioned expression includes all multiple-scattering
events among impurities, while avoiding sequential scattering
off the same impurity (as tn contains the sequential site-diagonal
scattering to all orders of ΔV ).

We assume that the impurities are nonoverlapping (which is a
reasonable approximation at low concentration) and identical
and are thus characterized by the same matrix tn ¼ t ∀n. We also
apply in part the stationary phase approximation for the host
Green function,[6] which is valid at long distances. This is justi-
fied at low impurity concentrations as the largest part of the sur-
face, where the Fourier transform is performed, is covered by
host atoms and is far from the impurities. Within this approxi-
mation, the host Green function may be approximated by
GhostðRn þ x,Rn0 þ x0;EÞ ¼ Knn0 ðx, x0;EÞeiknn0 ⋅Rnn0 , where knn0 is
a stationary point on the constant energy surface Eknn0 ¼ E,
and is defined by the property that the group velocity vknn0 must
be parallel to the vector Rnn0 ¼ Rn � Rn0 . The quantity
Knn0 ðx, x0;EÞ contains the rest of the Green function, including
a power–law decay with distance (Knn0 ∝ jRnn0 j�1=2 in two dimen-
sions). The important consequence of this approximation for our
purposes is that the phase of the long-distance propagation,
eiknn0 ⋅Rnn0 , is governed only by the stationary point (in the case
of multiple stationary points, a summation over the correspond-
ing contributions is implied). Then we argue that, in the Fourier
transform of Equation (10), the contribution of the first term
of the right-hand side of Equation (22) is dominant and
equal to the single-impurity contribution, whereas the remainder
(the contribution of tĞT ) is negligible.

We decompose the Green function difference (Equation (3))
in two terms corresponding to the decomposition of the
T -matrix (22)
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ΔGnn ¼ ΔGð1Þ
nn þ ΔGð2Þ

nn (23)

¼
X
m

Ghost
nm tGhost

mn þ
X
m

Ghost
nm t

X
n0n00

Ğmn0T n0n00Ghost
n00n (24)

All first-order terms,Ghost
nm tGhost

mn , give identical contributions to
the Fourier transform ΔGðqÞ, because both Ghost

mn and Ghost
nm

depend on the sites n and m only via the difference Rnm.
If N is the number of impurities, and setting one impurity
at positionm ¼ 0, we have

P
n ∫ nd

2xe�iq⋅ðxþRnÞ P
m Ghost

nm tGhost
mn ¼

N
P

n ∫ nd
2xe�iq⋅ðxþRnÞGhost

n0 tGhost
0n , which can be shown by

changing the summation over Rm to Rnm. This is, however,
not true for the higher-order terms. Applying the stationary
phase approximation to Ghost

n00n in Equation (24) (last term), we
obtain ΔGð2Þ

nn ¼ P
m Ghost

nm t
P

n0n0 0 Ğmn0T n0n00Kn00neikn00n⋅Rn00n . In the
Fourier transformation, the translational symmetry of the
host allows us again to place m ¼ 0 by a reindexing, but
the contribution of the last phase, eikn00n⋅Rn00n , cannot be lifted.
As the impurities are randomly placed, the total contribution
of the random phases over all impurities practically cancels in
the Fourier transform. Of course, an exact cancellation requires
a sum over all configurations and thus cannot take place unless
the scanned surface area is infinitely large, which is never the
case. However, our analysis shows that the single-site term
should always give the dominant contribution. In this respect,
a calculation of the single-impurity Fourier transform should
give a qualitatively and quantitatively representative picture of
the full problem, which is numerically advantageous in an ab ini-
tio calculation.

We tested our hypothesis in a model system of a free-electron
surface with s-wave-scattering point defects, randomly placed
and averaged over 50 configurations. Numerical simulations
(not shown here) of 1000 impurities in a 1000� 1000Å2 box
show that, in the Fourier transform, the single-site term domi-
nates over the multiple-scattering contribution by an order of
magnitude.

2.4. Joint Density of States: Ad Hoc Model or Approximation?

A frequently used approach to the Fourier-transformed QPI is
the joint density of states (JDOS)[4,7,21,22] or extended JDOS
(exJDOS)[23] approach, which is applied if the constant-energy
contours (CECs) fkjEk ¼ Eg at energy E are known (e.g., from
calculations or from angular-resolved photoemission experi-
ments), but the full Green function Ghost or the full T -matrix
are not known. Motivated by Equation (10), one defines the
quantity

exJDOSðq;EÞ ¼
Z
Ek¼E

dknsurf ðk;EÞMk,k�qγ
STM
k,k�qnsurf ðk � q;EÞ

(25)

which a weighted convolution of the spectral amplitude at
the pristine crystalline surface, nsurf ðk;EÞ ¼ ∫ surf jΨkðrÞj2d3r
(the integration over r takes place in the surface and/or in the
vacuum region where the STM is positioned). Here, k and
k � q are confined to the CEC by assumption. The matrix ele-
ment Mk,k�q contains information on the scattering properties
of the defect. For topological insulators, where spin-flip

scattering is at the center of interest, and for nonmagnetic
defects, where spin-flip scattering is suppressed, the reasonable
approximation Mk,k�q ¼ jT k,k0 j2 ∝ 1þ cosðsk, sk0 Þ has been pro-
posed[4], where sk is the spin polarization vector of the state at
k. In addition, a factor γSTMk,k�q ¼ 1� cosðvk, vk�qÞ was introduced
in the study by Sessi et al.[23] to promote standing wave formation
by back-scattering (opposite group velocities), in the spirit of the
stationary phase approximation. At the end, exJDOSðq;EÞ is
expected to approximately reproduce jΔnðq;EÞj, as both should
peak at the scattering vectors.

The JDOS approach has been introduced as an ad hoc model.
The question is if it also constitutes an approximation to the
theory expressed by Equation (7), (10), and (11). We find that
exJDOSðq;EÞ ∝ jΔnðq;EÞj2, under a number of assumptions that
are scrutinized in the following. From Equation (10) and (11), we
have (dropping the variables E and z)

jΔnðqÞj2 ¼ ΔnðqÞΔnð�qÞ ¼ � 1
4π2

Tr½ΔGðqÞ � ΔGð�qÞ*�
� Tr½ΔGð�qÞ � ΔGðqÞ*�

(26)

We use the stationary phase approximation to the Green func-
tion, according to which

ΔGðr, r;EÞ ¼� 4π3

Ω2
recℏ2

X
kðrÞ, k̄ðrÞ

ukðrÞT k,k̄u
†

kðrÞ

� exp
�
� iπ

4

�
sign

�
∂2Ek

∂k2k

�
þ sign

�
∂2E k̄

∂k̄2k

���

�ðjvkjjvk̄jÞ�1=2

���� ∂
2Ek

∂kk2
∂2Ek

∂k̄k2

����
�1=2 eiðk�k̄Þ⋅r

jrj

(27)

¼
X
kk̄

akak̄ukðrÞT k,k̄u
†

k̄
ðrÞeiðk�k̄Þ⋅r=jrj (28)

at large distances jrj from the impurity (which is placed at r ¼ 0).
We omitted the band index α to simplify the notation. The dis-
crete summation for a given r in (27) runs over k-points that are
stationary with respect to the host Green function phase, i.e., they
are pinned with respect to the energy, Ek ¼ E k̄ ¼ E, and also
pinned at such positions on the CEC, that the group velocity
vk is in the direction r and the group velocity vk̄ is in the opposite
direction,�r. The symbols uk and uk̄ stand for the lattice-periodic
part of the wave-function, whereas kk and k̄k run on the CEC.
The last expression (28) is a convenient abbreviation with obvious
shorthand notation for ak and ak̄. The Fourier transformation
reads

ΔGðq;EÞ ¼
Z

d2r
X
kk̄

akak̄ukðrÞT k,k̄u
†

k̄
ðrÞeiðk�k̄�qÞ⋅r=jrj (29)

¼
Z

∞

0
dr
X
CEC

Z
CEC

dkkDðkkÞ
X
k̄

akak̄ukðrÞ

� T k,k̄u
†

k̄
ðrÞeiðk�k̄�qÞ⋅r

(30)

In the last step, we converted the integration variable from d2r to
rdrdθ and subsequently dθ toDðkkÞdkk, where the variable kk is a
parameter running over all CECs as θ forms the unit
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circle (to each stationary point k corresponds a direction θ). The
quantity DðkkÞ is the integration weight corresponding to the lat-
ter transformation and depends on the exact shape of the CEC.
The stationary points k and k̄ are now functions of kk on the CEC,
instead of θ (essentially k coincides with kk on the CEC). To each
k, there may correspond multiple k̄ points of opposite group
velocity, therefore the summation over multiple possible k̄ for
each kk remains.

So far we have only used the stationary phase approximation.
To derive the JDOS or the exJDOS model, we must make addi-
tional assumptions. First, the weight DðkkÞ must be dropped, or
set to a constant, as it does not appear in the exJDOS expression.
But this is justifiable only when the CEC is approximately isotro-
pic. Then, the assumption must be made that the dominant con-
tribution to the Fourier transform of Equation (30) comes from
the points where the phase vanishes (k � k̄ � q ¼ 0), dropping
the r-integration and confining the kk-integration only to the
points satisfying the latter condition. In addition, on forming
products of the type Gðq;EÞGðq;EÞ* (and similar) that occur
in Equation (26), products of wavefunctions of the type u†kuk0
expressing the density, as well as products of T -matrix elements
expressing the transition rate, will appear. To comply with
the JDOS (25), the mixed-k (i.e., k 6¼ k0) density terms must
be dropped. The terms ak and ak̄ should be also ignored
(or set to a constant). Finally, the weighting factor γSTMk,k�q ¼
δð vk

jvk j þ
vk�q

jvk�q jÞ (instead of the milder γSTMk,k�q ¼ 1� cosðvk, vk�qÞ)
should be set in the definition of the exJDOS (25) to account
for the stationary-phase approximation.

The aforementioned discussion shows that the JDOS and
exJDOS approaches are not quantitative approximations but
qualitative models. Still, they comprise the essential parts of
the information that one usually seeks in Fourier-transformed
QPI spectra and therefore constitute a useful tool for their
analysis.

3. Applications

To showcase the use of our newly developed method, we apply it
to the topological insulator Bi2Te3, which hosts nontrivial surface
states characterized by spin-momentum locking that are pro-
tected by time-reversal symmetry against backscattering.

In our density functional calculations within the relativistic
full-potential KKR Green function framework,[24–27] we consid-
ered a six quintuple layer thick film of Bi2Te3 using the experi-
mental lattice constant,[28] which was chosen such that the “top”
and “bottom” surface states of the thin film decouple. We used an
angular momentum cutoff of lmax ¼ 3 including corrections for
the exact shape of the cells[29,30] and the local spin density approx-
imation[31] for the exchange-correlation functional. The Fermi
level was set such that it resides inside the bulk band gap, which
ensures that the Fermi surface consists of the topological surface
state alone without projections of bulk bands. Such a situation
can be achieved experimentally by doping or gating. Figure 1
shows the setup of the calculation, where the bandstructure
(Figure 1a) and Fermi surface of the system at hand
(Figure 1b) are shown together with the spin-polarization of
the topological surface state. Our calculations reproduce the
experimentally measured warping of the Fermi surface for bulk

insulating samples[33] reasonably well. For a better quantitative
agreement of the size of bulk bandgap and the strength of the
warping, more demanding calculations using the GW approxi-
mation[34,35] would be needed which is beyond the scope of this
work.

Single substitutional impurities were embedded into the
Bi2Te3 host at the outermost Bi site, as shown in Figure 1c.
We considered nonmagnetic TeBi (the subscript indicates the
substituted position) defect, which occurs naturally as an antisite
defect, as well as magnetic MnBi and FeBi impurity atoms. It has
been previously shown[36–38] that the substitutional Bi site is a
thermodynamically stable position of transition metals in
Bi2Te3, indicating the relevance of our findings. The impurities
were embedded into the host system self-consistently making
use of the Dyson equation[25] while neglecting structural relax-
ations around the impurities. The first shell of nearest neigh-
bors was included in the calculation for a correct screening
of the charge of the impurities. The resulting density of states
for the three defects are shown in Figure 1d. Although the den-
sity of states at the Fermi level is small for the TeBi defect, the
incompletely filled d shell of the transition metal impurities
results in a higher density of states at the Fermi level. In accor-
dance to Hund’s rule, we find that the MnBi defect is close to
half-filling, whereas the Fermi level bisects the d state resonance
of the FeBi impurity. From analyzing the impurity density of
states and in the spirit of the Friedel sum rule, which was recently
demonstrated to hold in this class of materials,[39] one expects
considerable differences in the scattering properties of the dif-
ferent impurities. In addition, the magnetic nature of the Mn and
Fe defects is expected to reopen the forbidden backscattering
channel due to the breaking of time-reversal symmetry.

The strong hexagonal warping in Bi2Te3 leads to a snowflake-
like shape of the Fermi surface that enables two major scattering
channels,[12,40] q1 and q2, which are shown in Figure 1e. The
backscattering channel (q1) is expected to be suppressed by
time-reversal symmetry for scattering off nonmagnetic defects
and can be reopened by scattering off magnetic defects. The triv-
ial scattering channel q2 is however always possible. These facts
are illustrated by the JDOS [Equation (25) withMk,k0 ¼ γSTMk,k0 ¼ 1]

and spin-conserving JDOS (SJDOS, Mk,k0 ¼ sk ⋅ sk0 , γSTMk,k�q ¼ 1)
shown in Figure 1f,g, which reveal that the suppression of back-
scattering introduced by forbidden time-reversal scattering sup-
presses the signal at q1 (Figure 1g). The suppression of the
signal at q1 is however incomplete because the backscattering
contribution highlighted with the red arrow in Figure 1e is
not the only contribution to the QPI signal at this q-point.
Additional contributions coming from vectors q10 at ky ¼
�0.07Å�1 in Figure 1e, where the suppression with the factor
sk ⋅ sk0 is incomplete, overshadow the suppression partially.
It should be noted that the widely used JDOS and SJDOS
approaches use only information about the electronic structure
of the host system while neglecting the scattering properties of
the impurities except for their ability to conserve or break time-
reversal symmetry. In the following sections, the analogous
results for the improved impurity-specific Fourier-transformed
QPI (FT-QPI) simulation within the KKR formalism that consid-
ers the scattering properties of the impurities will be discussed
and compared with the standard (S)JDOS approaches.
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3.1. Impurity Specific FT-QPI from First Principles

The main calculations of this work are shown in Figure 2.
Figure 2a shows the real-space oscillations in the charge density
on the surface, induced by a single subsurface MnBi impurity,
often referred to as Friedel oscillations. The change in the charge
density on the surface was computed for 2148 atomic positions
within a radius of 108Å around the position of the impurity.
Note that supercell-based approaches would have to deal with
a size of approximately 50� 50� 30 ¼ 75 000 atoms in the unit
cell. To demonstrate the validity of our following simulations, we
conducted a fast Fourier transform (FFT) of the real-space data,
which is shown in Figure 2b. The FT-QPI image is dominated by
the near-impurity region, resulting in a strong background cen-
tered around q ¼ 0. To reveal the scattering signatures visible in
the long-range tail of the Friedel oscillations around the impurity,
we furthermore substracted the near-impurity region within a
radius of 7.2 Å from the FFT (excluding explicitly the first four
shells of neighbors), as it is frequently done[11] in QPI analyses of
STM experiments. The result is shown in Figure 2c, where we
identify signatures of the two dominant scattering channels, q1
and q2, in the resulting image as well as a star-like feature

[highlighted by six white lines in Figure 2c] associated to small
angle-scattering off the impurities. Although this FFT comprises
a very large region around the impurity only a low resolution
could be achieved in the resulting image. It is obvious that for
sufficient accuracy much larger regions need to be included
in the FFT, which is, however, numerically expensive.

The results of out new implementation are shown in
Figure 2d–f for the full Fourier transform of the TeBi, MnBi,
and FeBi impurities, respectively. The images were simulated
using a dense k-point mesh of 301� 301 points in the
Brillouin zone with a broadening introduced by a small imagi-
nary part in the energy of �5meV. The results were checked
to be converged with respect to these numerical parameters.
The much higher resolution in the full FT-QPI images
(Figure 2d–f ) reveal clear evidence of the prominent q1- and
q2-signals, which are far better resolved when the same
near-impurity regions including the first four shells around the
impurity position is excluded from the Fourier transform
(Figure 2g–i).

Next, we compare the different signatures (intensities at q1, q2)
in the FT-QPI image among the different impurities. Scattering
off the nonmagnetic TeBi defect is characterized by a strong focus
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Figure 1. Setting of the numerical simulations. a) Bandstructure of Bi2Te3 with the topological surface state highlighted with white dashed lines and
b) its spin polarization on the Fermi surface. c) Location of the substitutional impurities in the outer most Bi layer and d) the density of states (DOS) of the
different impurities under consideration (the positive DOS axis corresponds to spin-up, the negative to spin-down). e) Hexagonally warped Fermi surface
of Bi2Te3 with the most prominent scattering channels, q1 and q2, indicated by solid red and dashed green arrows, respectively. f ) JDOS and g) SJDOS
show the conventional way of interpreting FT-QPI images. Adapted under the terms of a Creative Commons Attribution CC BY 4.0 license.[32]

Copyright 2018, The Author, published by Forschungszentrum Jülich.
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in forward (i.e., small-angle or q ¼ 0) scattering direction. This is
a consequence of the forbidden backscattering that disallows the
scattering vector q1 as seen by looking at the scattering rate
Pk,k0 ¼ 2π

ℏ jT k,k0 j2δðEk � Ek0Þ,[24,26,27] which is illustrated for
one particular incoming wave, k0, in Figure 2j. The strong focus

to small angle scattering leads to the absence of a signal at q1 and
only a moderate intensity at q2 compared with the dominant
star-like feature around q ¼ 0. In contrast, the intensity at q2
is stronger for the MnBi and FeBi impurities (Figure 2h,i).
This is a consequence of the lesser focused scattering in forward

(b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

(j) (k) (l)

Figure 2. QPI from first principles. a) Real-space image of the charge density oscillations integrated within atomic cells at a distance of z ¼ 1.4 Å above a
MnBi impurity situated at (0,0). b) FT-QPI of of the real-space data shown in (a) computed via FFT. c) FT-QPI as in (b) but with the near-impurity region
within a radius of R0 ¼ 10 Å (including up to fourth nearest neighbors) set to zero. d–f ) Impurity specific FT-QPI images [after Equation (11)] for TeBi,
MnBi, and FeBi impurities. g–i) Corresponding FT-QPI images excluding the near-impurity region within R0 [after Equation (13)] as in (c). j–l) Scattering
rate (Pk,k0 in 1=ðfs at%dLÞ with dL being the Fermi surface line segment) on the Fermi surface for an incoming wave characterized by the wavevector k0
for scattering off the TeBi, MnBi, and FeBi impurities, respectively. The inset in (i) shows the ratio of the FT-QPI intensity at q1 in (g–i) relative to the signal
of the TeBi impurity ðΔn̆ðq1Þ=Δn̆ðq1; TeBiÞÞ. Adapted under the terms of a Creative Commons Attribution CC BY 4.0 license.[32] Copyright 2018,
The Author, published by Forschungszentrum Jülich.
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direction, as shown in Figure 2k,l for the MnBi and FeBi impuri-
ties. It should, however, be noted that the overall scattering
strength is roughly ten times larger for the Mn and Fe impurities
compared with Te (see color scales in Figure 2j–l), which leads to
a more pronounced start-like central feature in the QPI images
around q ¼ 0 in (Figure 2h) compared with (Figure 2g).
Although the magnetic impurities break the protection against
backscattering, the backscattering amplitude is still much
smaller than scattering into forward direction or near
120°-scattering (q2). This results in the relatively weak signal
of backscattering (q1) in the FT-QPI image of single magnetic
defects. This result is in line with recent investigations in
Mn-doped Bi2Te3, where ferromagnetically coupled clusters of
atoms were shown to be necessary for the efficient reopening
of the backscattering channel within the topological surface
state.[23] The higher backscattering rate off the FeBi impurity
(see the amplitude of P�k0, k0 in Figure 2l) compared with the
MnBi defect (Figure 2k) seems counter intuitive at first sight
when considering that Mn has the higher spin moment
(4.48 μB) compared with Fe (3.54 μB). However, considering
the higher density of states at the Fermi level in the case of
the FeBi impurity in the context of Wigner’s time delay, which
relates the higher scattering potential to a longer effective stay
at the impurity, the more efficient coupling of the surface state
electrons in Bi2Te3 to the FeBi impurity becomes apparent. As a
consequence the FT-QPI intensity at q1 in fact increases by a
factor �2 and �3.5 (see inset in Figure 2i), when going from
TeBi over MnBi to the FeBi defect, which is a clear signature
of the increasing backscattering amplitude.

A comparison of our simulations to experimental results
for nonmagnetic (Ca doping) and magnetic (Mn) doping of
Bi2Te3

[12] shows a good agreement between theory and experi-
ment. The two main features (i.e., high intensity around q ¼ 0
and the 6 features at q2) are well reproduced. It can however
be seen that our simulations show more structure in the result-
ing QPI images which we attribute to different effects that are
omitted in the simulation. Possible reasons why the experimen-
tal pictures are more smeared out are local fluctuations of the
Fermi level, additional impurity configurations like adatoms
or intrinsic defects such as vacancies or antisites.

In summary, our simulations of the impurity-specific FT-QPI
reveals that not only information on the host’s electronic

structure can be extracted but also the scattering properties of
different impurities are accessible.

3.2. Comparison with JDOS Approaches

Usually the interpretation of experimental FT-QPI images is
done by comparison with calculations based on the joint density
of states. The comparison between the (S)JDOS in Figure 1f,g on
the one hand and the impurity-specific results of the FT-QPI
shown in Figure 2 on the other hand reveals that a proper
description of the impurity scattering is crucial for quantitative
understanding of the scattering process off defects. In particular,
the intensity at the backscattering signal (q1) is overestimated in
the simple (S)JDOS approaches and the strong focus in small-
angle scattering is underestimated. A significant improvement
was the exJDOS (Equation (25)), that does include the correct
scattering information of the different impurities and which is
shown for the three defects (TeBi, MnBi, and FeBi) in Figure 3.
Qualitatively, the correct FT-QPI can be reproduced and a strong
suppression of the q1 signal is found in accordance to the results
of Figure 2.

This gives an a posteriori justification of the use of the exJDOS
model in the interpretation of experimental QPI images and
allows for the extraction of scattering information as the interplay
between the electronic structure of the host system and the
embedded impurities. It can, however, not be excluded that in
other systems, the terms that are dropped in the JDOS-
approaches (e.g., mixed k contributions or anisotropic scattering
rate) become important.

4. Conclusions

We have derived a Green function and T -matrix-based formal-
ism for the calculation of Fourier-transformed QPI images that
are measured with STM. We have implemented our theory into
the KKR Green function method, allowing for ab-initio calcula-
tions for the translational-invariance-breaking impurity problem.
Different from simple JDOS models, our approach accounts for
the calculated scattering amplitude of the Bloch wavefunctions
off the defects. We have examined the derivation of the
JDOS approaches and shown that they are not quantitative

(a) (b) (c)

Figure 3. The exJDOS approach for the simulation of FT-QPI images of a) TeBi, b) MnBi, and c) FeBi impurities. A good qualitative agreement with the
simulations of Δn̆ðq; EÞ in Figure 2g–i is shown, which is a significant improvment over the (S)JDOS images shown in Figure 1. Adapted under the terms
of a Creative Commons Attribution CC BY 4.0 license.[32] Copyright 2018, The Author, published by Forschungszentrum Jülich.
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approximations, but ad hoc qualitative models. Still, in their
simplicity, they comprise an important qualitative part of the
Fourier-transformed QPI physics. We have also derived the
approximation of calculating the Fourier-transformed QPI from
a single defect, compared with the result of multiple, randomly
placed defects and shown that it is reliable at low defect concen-
trations because of a cancellation of the multiple-scattering
wavefunction phase.

We have applied our KKR-based implementation to nonmag-
netic and magnetic defects embedded in the surface of the topo-
logical insulator Bi2Te3, providing microscopic insights into the
scattering properties of topological surface state electrons and
their response to time-reversal conserving or breaking defects.

In the future, the newly developed QPI program can thus be
applied to other systems than topological insulators. In particu-
lar, the study of topological materials like type-I[41] and type-II
Weyl semimetals[42] benefit fromQPI investigations as they allow
to study the extraordinary surface states in these materials.

Appendix

Multiple-Scattering T -Matrix

Here, we provide a proof of Equation (22) that avoids the infinite-
series expansion given in the study by Rodberg and Thaler.[20]

The Dyson equation for the T -matrix can be written in two equiv-
alent forms

T ¼ ΔV þ ΔVGhostT ¼ ΔV þ T GhostΔV (A1)

We rewrite the first form as

ΔV ¼ T ð1þGhostT Þ�1 (A2)

Let us denote the impurity sites with the index n. It is
convenient to use a notation where we collect the single-site
T -matrices in a site-diagonal matrix T d with ðT dÞnn0 ¼ tnδnn0 .
In analogy, we collect the diagonal part of the Green function
in the matrix ðGhost

d Þnn0 ¼ Ghost
nn δnn0 . ΔV is trivially site diagonal.

Then, for the site-diagonal parts, we use the second form of
Equation (A1) that yields T d ¼ ΔV þ T dGhost

d ΔV , i.e.

ΔV ¼ ð1þ T dGhost
d Þ�1T d (A3)

Eliminating ΔV in (A2) and (A3), we obtain

T ¼ T d þ T dðGhost �Ghost
d ÞT (A4)

which is equivalent to (22).
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