000877500 001__ 877500
000877500 005__ 20220930130241.0
000877500 0247_ $$2doi$$a10.1088/1361- 648X/ab9cf0
000877500 0247_ $$2Handle$$a2128/25514
000877500 0247_ $$2pmid$$apmid:32541095
000877500 0247_ $$2WOS$$aWOS:000555869100001
000877500 037__ $$aFZJ-2020-02250
000877500 082__ $$a530
000877500 1001_ $$0P:(DE-Juel1)167440$$aFernandes, Imara Lima$$b0$$eCorresponding author
000877500 245__ $$aImpurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface
000877500 260__ $$aBristol$$bIOP Publ.$$c2020
000877500 3367_ $$2DRIVER$$aarticle
000877500 3367_ $$2DataCite$$aOutput Types/Journal article
000877500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615814068_31766
000877500 3367_ $$2BibTeX$$aARTICLE
000877500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877500 3367_ $$00$$2EndNote$$aJournal Article
000877500 520__ $$aResting on multi-scale modelling simulations, we explore dynamical aspects characterizing magnetic skyrmions driven by spin-transfer-torque towards repulsive and pinning 3d and 4d single atomic defects embedded in a Pd layer deposited on the Fe/Ir(111) surface. The latter is known to host sub-10 nm skyrmions which are of great interest in information technology. The Landau–Lifshitz–Gilbert equation is parametrized with magnetic exchange interactions extracted from the ab-initio all-electron full potential Korringa–Kohn–Rostoker Green function method, where spin–orbit coupling is added self-consistently. Depending on the nature of the defect and the magnitude of the applied magnetic field, the skyrmion deforms by either shrinking or increasing in size, experiencing thereby elliptical distortions. After applying a magnetic field of 10 T, ultrasmall skyrmions are driven along a straight line towards the various defects which permits a simple analysis of the impact of the impurities. Independently from the nature of the skyrmion-defect complex interaction, being repulsive or pinning, a gyrotropic motion is observed. A repulsive force leads to a skyrmion trajectory similar to the one induced by an attractive one. We unveil that the circular motion is clockwise around pinning impurities but counter clockwise around the repulsive ones, which can be used to identify the interaction nature of the defects by observing the skyrmions trajectories. Moreover, and as expected, the skyrmion always escapes the repulsive defects in contrast to the pinning defects, which require a minimal depinning current to observe impurity avoidance. This unveils the richness of the motion regimes of skyrmions. We discuss the results of the simulations in terms of the Thiele equation, which provides a reasonable qualitative description of the observed phenomena. Finally, we show an example of a double track made of pinning impurities, where the engineering of their mutual distance allows to control the skyrmion motion with enhanced velocity.
000877500 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000877500 536__ $$0G:(DE-Juel1)jias17_20190501$$aFirst-principles investigation of single magnetic nano-skyrmions (jias17_20190501)$$cjias17_20190501$$fFirst-principles investigation of single magnetic nano-skyrmions$$x1
000877500 588__ $$aDataset connected to CrossRef
000877500 7001_ $$0P:(DE-Juel1)171338$$aChico, Jonathan$$b1
000877500 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b2
000877500 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab9cf0$$gVol. 32, no. 42, p. 425802 -$$n42$$p425802$$tJournal of physics / Condensed matter$$v32$$x0953-8984$$y2020
000877500 8564_ $$uhttps://juser.fz-juelich.de/record/877500/files/Fernandes_2020_J._Phys.__Condens._Matter_32_425802.pdf$$yOpenAccess
000877500 8564_ $$uhttps://juser.fz-juelich.de/record/877500/files/Fernandes_2020_J._Phys.__Condens._Matter_32_425802.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877500 8767_ $$d2020-06-09$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pJPCM-116469.R1
000877500 909CO $$ooai:juser.fz-juelich.de:877500$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-27
000877500 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2018$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877500 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000877500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877500 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000877500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877500 9141_ $$y2020
000877500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167440$$aForschungszentrum Jülich$$b0$$kFZJ
000877500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b2$$kFZJ
000877500 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000877500 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877500 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000877500 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000877500 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000877500 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000877500 980__ $$ajournal
000877500 980__ $$aVDB
000877500 980__ $$aI:(DE-Juel1)IAS-1-20090406
000877500 980__ $$aI:(DE-Juel1)PGI-1-20110106
000877500 980__ $$aI:(DE-82)080009_20140620
000877500 980__ $$aI:(DE-82)080012_20140620
000877500 980__ $$aAPC
000877500 980__ $$aUNRESTRICTED
000877500 9801_ $$aAPC
000877500 9801_ $$aFullTexts