001     877500
005     20220930130241.0
024 7 _ |2 doi
|a 10.1088/1361- 648X/ab9cf0
024 7 _ |2 Handle
|a 2128/25514
024 7 _ |2 pmid
|a pmid:32541095
024 7 _ |2 WOS
|a WOS:000555869100001
037 _ _ |a FZJ-2020-02250
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)167440
|a Fernandes, Imara Lima
|b 0
|e Corresponding author
245 _ _ |a Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface
260 _ _ |a Bristol
|b IOP Publ.
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1615814068_31766
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Resting on multi-scale modelling simulations, we explore dynamical aspects characterizing magnetic skyrmions driven by spin-transfer-torque towards repulsive and pinning 3d and 4d single atomic defects embedded in a Pd layer deposited on the Fe/Ir(111) surface. The latter is known to host sub-10 nm skyrmions which are of great interest in information technology. The Landau–Lifshitz–Gilbert equation is parametrized with magnetic exchange interactions extracted from the ab-initio all-electron full potential Korringa–Kohn–Rostoker Green function method, where spin–orbit coupling is added self-consistently. Depending on the nature of the defect and the magnitude of the applied magnetic field, the skyrmion deforms by either shrinking or increasing in size, experiencing thereby elliptical distortions. After applying a magnetic field of 10 T, ultrasmall skyrmions are driven along a straight line towards the various defects which permits a simple analysis of the impact of the impurities. Independently from the nature of the skyrmion-defect complex interaction, being repulsive or pinning, a gyrotropic motion is observed. A repulsive force leads to a skyrmion trajectory similar to the one induced by an attractive one. We unveil that the circular motion is clockwise around pinning impurities but counter clockwise around the repulsive ones, which can be used to identify the interaction nature of the defects by observing the skyrmions trajectories. Moreover, and as expected, the skyrmion always escapes the repulsive defects in contrast to the pinning defects, which require a minimal depinning current to observe impurity avoidance. This unveils the richness of the motion regimes of skyrmions. We discuss the results of the simulations in terms of the Thiele equation, which provides a reasonable qualitative description of the observed phenomena. Finally, we show an example of a double track made of pinning impurities, where the engineering of their mutual distance allows to control the skyrmion motion with enhanced velocity.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)jias17_20190501
|a First-principles investigation of single magnetic nano-skyrmions (jias17_20190501)
|c jias17_20190501
|f First-principles investigation of single magnetic nano-skyrmions
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)171338
|a Chico, Jonathan
|b 1
700 1 _ |0 P:(DE-Juel1)130805
|a Lounis, Samir
|b 2
773 _ _ |0 PERI:(DE-600)1472968-4
|a 10.1088/1361-648X/ab9cf0
|g Vol. 32, no. 42, p. 425802 -
|n 42
|p 425802
|t Journal of physics / Condensed matter
|v 32
|x 0953-8984
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/877500/files/Fernandes_2020_J._Phys.__Condens._Matter_32_425802.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/877500/files/Fernandes_2020_J._Phys.__Condens._Matter_32_425802.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877500
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167440
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130805
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
913 2 _ |0 G:(DE-HGF)POF4-899
|1 G:(DE-HGF)POF4-890
|2 G:(DE-HGF)POF4-800
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)1230
|2 StatID
|a DBCoverage
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-02-27
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PHYS-CONDENS MAT : 2018
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
|d 2020-02-27
|w ger
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-02-27
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2020-02-27
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21