001     877527
005     20240712112912.0
024 7 _ |a 10.26434/chemrxiv.12280325.v1
|2 doi
024 7 _ |a 2128/25061
|2 Handle
037 _ _ |a FZJ-2020-02263
100 1 _ |a Schweidtmann, Artur
|0 0000-0001-8885-6847
|b 0
245 _ _ |a Graph Neural Networks for Prediction of Fuel Ignition Quality
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1592231960_31295
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rittig, Jan
|0 0000-0003-4645-5716
|b 1
700 1 _ |a König, Andrea
|0 0000-0001-6372-3546
|b 2
700 1 _ |a Grohe, Martin
|0 0000-0002-0292-9142
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.26434/chemrxiv.12280325.v1
856 4 _ |u https://juser.fz-juelich.de/record/877527/files/Schweidtmann-et-al_Manuscript_ChemRxiv_20200511.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877527
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0001-8885-6847
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 0000-0003-4645-5716
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 0000-0001-6372-3546
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 0000-0002-0292-9142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172097
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21