000877529 001__ 877529
000877529 005__ 20240712112913.0
000877529 0247_ $$2arXiv$$aarXiv:2005.10902
000877529 0247_ $$2Handle$$a2128/25062
000877529 0247_ $$2altmetric$$aaltmetric:82673196
000877529 037__ $$aFZJ-2020-02265
000877529 1001_ $$0P:(DE-HGF)0$$aSchweidtmann, Artur M.$$b0
000877529 245__ $$aGlobal Optimization of Gaussian Processes
000877529 260__ $$c2020
000877529 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1592296993_31295
000877529 3367_ $$2ORCID$$aWORKING_PAPER
000877529 3367_ $$028$$2EndNote$$aElectronic Article
000877529 3367_ $$2DRIVER$$apreprint
000877529 3367_ $$2BibTeX$$aARTICLE
000877529 3367_ $$2DataCite$$aOutput Types/Working Paper
000877529 520__ $$aGaussian processes~(Kriging) are interpolating data-driven models that are frequently applied in various disciplines. Often, Gaussian processes are trained on datasets and are subsequently embedded as surrogate models in optimization problems. These optimization problems are nonconvex and global optimization is desired. However, previous literature observed computational burdens limiting deterministic global optimization to Gaussian processes trained on few data points. We propose a reduced-space formulation for deterministic global optimization with trained Gaussian processes embedded. For optimization, the branch-and-bound solver branches only on the degrees of freedom and McCormick relaxations are propagated through explicit Gaussian process models. The approach also leads to significantly smaller and computationally cheaper subproblems for lower and upper bounding. To further accelerate convergence, we derive envelopes of common covariance functions for GPs and tight relaxations of acquisition functions used in Bayesian optimization including expected improvement, probability of improvement, and lower confidence bound. In total, we reduce computational time by orders of magnitude compared to state-of-the-art methods, thus overcoming previous computational burdens. We demonstrate the performance and scaling of the proposed method and apply it to Bayesian optimization with global optimization of the acquisition function and chance-constrained programming. The Gaussian process models, acquisition functions, and training scripts are available open-source within the 'MeLOn - Machine Learning Models for Optimization' toolbox~(https://git.rwth-aachen.de/avt.svt/public/MeLOn).
000877529 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877529 588__ $$aDataset connected to arXivarXiv
000877529 7001_ $$0P:(DE-HGF)0$$aBongartz, Dominik$$b1
000877529 7001_ $$0P:(DE-HGF)0$$aGrothe, Daniel$$b2
000877529 7001_ $$0P:(DE-HGF)0$$aKerkenhoff, Tim$$b3
000877529 7001_ $$0P:(DE-HGF)0$$aLin, Xiaopeng$$b4
000877529 7001_ $$0P:(DE-HGF)0$$aNajman, Jaromil$$b5
000877529 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b6$$eCorresponding author$$ufzj
000877529 8564_ $$uhttps://juser.fz-juelich.de/record/877529/files/Schweidtmann_Global_optimizaton_of_GPs_manuscript.pdf$$yOpenAccess
000877529 8564_ $$uhttps://juser.fz-juelich.de/record/877529/files/Schweidtmann_Global_optimizaton_of_GPs_manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877529 909CO $$ooai:juser.fz-juelich.de:877529$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000877529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b6$$kFZJ
000877529 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b6$$kRWTH
000877529 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877529 9141_ $$y2020
000877529 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877529 920__ $$lyes
000877529 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877529 9801_ $$aFullTexts
000877529 980__ $$apreprint
000877529 980__ $$aVDB
000877529 980__ $$aUNRESTRICTED
000877529 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877529 981__ $$aI:(DE-Juel1)ICE-1-20170217