


The top-down guided (i.e., voluntary) orienting of attention involves

a bilaterally organized dorsal frontoparietal network, encompassing the

intraparietal sulcus (IPS) and the frontal eye-fields (FEF). Converging evi-

dence from functional imaging and transcranial magnetic stimulation

(TMS) suggests that these regions may modulate the activity in sensory

(e.g., visual) cortices to prioritize the processing of stimuli at specific loca-

tions in space (e.g., Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008;

Hung, Driver, & Walsh, 2011; Ruff et al., 2008; Vossel, Weidner, Driver,

Friston, & Fink, 2012).

Unexpected or very salient stimuli may interrupt our current top-

down guided focus of attention (Simons, 2000), initiating a redistribu-

tion of processing resources. In this case, the allocation of attention is

guided in a bottom-up fashion, meaning that it is primarily based on

external stimulus features. The ventral frontoparietal attention net-

work supposedly regulates this bottom-up control of attention. A cen-

tral node within this network is the temporoparietal junction (TPJ),

which has been suggested to be the driving force for attentional

reorienting (Corbetta et al., 2008). The ventral network further con-

sists of the inferior and the middle frontal gyrus (IFG, MFG) and is typ-

ically described as being strongly lateralized to the right hemisphere

(Corbetta & Shulman, 2011). Recent studies, however, show that left

TPJ is also involved in controlling spatial attention (Beume

et al., 2017; Silvetti et al., 2016).

Unilateral lesions following a stroke can lead to an inability to

allocate attention to the visual field contralateral to the lesion

(Halligan, Fink, Marshall, & Vallar, 2003)—a phenomenon often

referred to as hemispatial neglect. Neglect is more frequent and

severe following right-hemispheric lesions and causes symptoms pre-

dominantly in contralesional space (Karnath, Rennig, Johannsen, &

Rorden, 2011). This lateralization suggests a unique role for orienting

and reorienting attention along the horizontal meridian and hence

motivated research with a focus on that particular spatial dimension.

Attentional orienting along the vertical meridian on the other hand

seems understudied, despite the fact that there is also evidence for a

vertical component in hemispatial neglect (Cappelletti, Freeman, &

Cipolotti, 2007) and that cases of vertical neglect of the upper visual

field after bilateral lesions to the inferior temporal lobes have been

reported (Shelton, Bowers, & Heilman, 1990). Vertical neglect com-

monly affects the lower left visual field after right hemispheric lesions

(Cazzoli, Nyffeler, Hess, & Müri, 2011; Müri, Cazzoli, Nyffeler, &

Pflugshaupt, 2009; Pitzalis, Spinelli, & Zoccolotti, 1997). The extent of

horizontal and vertical neglect along the meridians seems to be addi-

tive, becoming more pronounced at oblique positions (i.e., lower left

visual field), which has also been observed for pseudoneglect in

healthy participants (Nicholls, Mattingley, Berberovic, Smith, &

Bradshaw, 2004). Thus, the allocation of attention along the two

meridians may rely on distinct neural mechanisms.

However, it remains unclear if the brain regions controlling shifts

of spatial attention are tuned to specific spatial directions or if they

constitute a uniform system with no particular spatial preference

(i.e., directional tuning). Several attempts have already been made to

disentangle the neural mechanisms underlying vertical as compared to

horizontal attentional orienting. The evidence coming from different

neuroimaging studies, however, is inconclusive about the brain

regions involved. On the one hand, orienting attention along a hori-

zontal relative to a vertical axis activated the lingual and right

precentral gyrus, whereas orienting attention in a vertical dimension

involved more pronounced activation in the precuneus, medial frontal

cortex, anterior cingulate, and cerebellum (Mao, Zhou, Zhou, &

Han, 2007). Furthermore, ventral medial prefrontal cortex, cuneus,

and lingual gyrus have been reported to be more involved in horizon-

tal as compared to vertical antisaccades (Lemos et al., 2017), and left

FEF and left superior temporal gyrus are more related to vertical rela-

tive to horizontal prosaccades (Lemos et al., 2016). Several other stud-

ies could not find any evidence for differences between horizontal

and vertical attentional processes (Fink, Marshall, Weiss, & Zilles,

2001; Macaluso & Patria, 2007).

Therefore, the goal of the present fMRI study was to clarify the

involvement of attentional control areas in reorienting attention along

the vertical and horizontal meridian. To this end, both blood oxygena-

tion level dependent (BOLD) amplitudes and measures of effective

connectivity were employed. We used a variant of Posner's spatial

cueing paradigm (Posner, 1980) in which participants had to indicate

the orientation of a Gabor patch via button presses while ignoring dis-

tractor stimuli at other locations. A precue (arrow) indicated the most

likely target location. Spatial reorienting of attention was induced by

presenting invalid cues in 20% of the trials. The experiment involved

two runs that differed about the spatial direction of attentional

orienting and reorienting. In these two different runs, cues and targets

were presented either along the vertical or the horizontal meridian of

the visual field. Potential differences in attentional processing along

the vertical or horizontal meridian concerning the BOLD-amplitudes

were expected to induce a main effect of direction (horizontal, verti-

cal), or an interaction between direction and cueing (valid, invalid cue-

ing) in the standard general linear model (GLM) analysis of the fMRI

data. Furthermore, vertical and horizontal reorienting of attention

were expected to generate differential effective connectivity patterns

in the activated brain areas in an analysis using dynamic causal model-

ing (DCM, Friston, Harrison, & Penny, 2003).

2 | METHODS

2.1 | Participants

We recruited 29 right-handed participants (Edinburgh handedness

inventory [Oldfield, 1971], M = 0.86, SD = 0.14) with normal or

corrected to normal vision, who gave written informed consent. One

participant had to be excluded from both behavioral and fMRI analysis

due to noncompliance with the task. Another participant was

excluded only from further fMRI analysis due to excessive head move-

ments (translation >3 mm); however, the participant's behavioral data

were included in further analysis. The remaining 28 participants

(15 female) were between 21 to 39 years (M = 25, SD = 3) old. The

ethics board of the German Psychological Association had approved

the study. Participants were compensated with 15€ per hour.
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2.2 | Experiment

Participants performed a spatial cueing paradigm inside a 3 Tesla TRIO

MRI scanner (Siemens, Erlangen). Stimuli were displayed on a screen

that was mounted at the end of the scanner's bore and could be seen

by the participant via a mirror (245 cm distance). The mirror was

mounted on top of a 32 channel head coil. Participants' task through-

out the experiment was to report the orientation (horizontal 90� or

vertical 0� rotation) of a target stimulus (Gabor patch, diameter 1�

visual angle) using button presses of their left and right index fingers.

Participants were instructed to continually fixate a diamond in the

screen's center (0.5� wide). Next to the central diamond, empty boxes

(1� wide) were presented in all four cardinalities throughout the

experiment with their centers at 4� eccentricity. Each trial began with

an alerting signal, a 500 ms brightening of the diamond's center,

followed by a spatial cue (duration: 200 ms) after 1,000 ms. Brighten-

ing and widening of one of the central diamond's corners served as a

symbolic cue (arrowhead), indicating the most likely upcoming target

location with 80% probability. We informed the participants about

the cue validity during the task instructions. After a variable interval

of 400 or 600 ms, the target stimulus appeared (duration: 250 ms) in

the cued box (valid trial) or in the box opposite to the cue (invalid

trial). Distractor stimuli were presented in the remaining three boxes

for the same duration as the stimulus. Distractors were created by

superimposing two Gabor patches, which were rotated by 45� and

135�. The resulting pattern matched the target stimulus in intensity

and contrast (see Figure 1). The inter-trial interval separating subse-

quent trials was either 2.0 s, 2.7 s, 3.2 s, 3.9 s, or 4.5 s with equal

probability. Trials were presented in two subsequent runs, with a

short break in between. In one run, cues pointed only to the left or

right, and target stimuli were only presented along the horizontal

meridian. In the other run, cues pointed only upwards or downwards,

and the target only appeared in the upper or lower box (i.e., on the

vertical meridian). Before each run, participants completed 20 practice

trials with immediate feedback regarding accuracy. Each run consisted

of 5 blocks, each comprising 32 valid and 8 invalid trials. The 8 possible

target properties (position left/right or up/down, left/right response

finger, 400/600 ms SOA) were presented with equal probability in

each block. Trial order in each block, however, was fully randomized.

The order of horizontal and vertical runs and the response map-

ping (left or right finger for horizontally oriented stimuli) were

counterbalanced across participants. Between the different blocks,

a 10 to 13 s break period was included. Before the actual spatial

cueing paradigm, participants also completed a separate short train-

ing to get used to the response mapping between stimulus orienta-

tion and response fingers. Here, 60 target stimuli appeared rapidly

in the screen's center, and participants had 500 ms time to respond.

Immediate feedback was given, and the percentage of correct

responses was continuously presented. Recording of responses and

stimulus presentation were controlled with PsychoPy (version

1.85.3, Peirce, 2007, 2008; Peirce et al., 2019). Additionally, we

recorded eye-movement data during the experiment using an

EyeLink® 1000 eye tracker (SR Research). Set-up, analyses, and fur-

ther descriptions of the methods can be found in the supplementary

material (S2).

2.3 | Behavioral analyses

We used a two-step procedure to test for differences in reaction times

and error rates between the vertical and horizontal runs and the

effects of valid and invalid cueing. The resulting 2 (cueing: valid/invalid

F IGURE 1 One trial for each run of the cued attention task. In the upper row, a valid trial in the horizontal session is displayed, in the lower
row, an invalid trial of the vertical session. Displays for the alerting signal, cue, and stimulus presentation were enlarged for better presentation.
The smaller displays show the stimulus presentation in the correct proportions. Participants were told to always fixate the center of the screen.
Their task was to press a button corresponding to the orientation of the target stimulus (vertical or horizontal Gabor patches)
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cues) x 2 (direction: horizontal/vertical) design was subjected to a

Bayesian implementation of an analysis of variance (BF_ANOVA),

treating participants as random factors (Rouder, Morey, Speckman, &

Province, 2012). The Bayes factors (BF) for different models rep-

resenting the possible combinations of factors were calculated using

the BayesFactor package (version 0.9.12–4.2, Morey & Rouder, 2018)

implemented in R (version 3.5.1, R Core Team, 2018), using default

settings (“medium” scaling factor on the JSZ-prior and 10,000 itera-

tions of the MCMC algorithm). The BF10 in favor of the model (H1)

was calculated by dividing the model's posterior probability by the pos-

terior probability of a null model (grand mean plus random factors, H0).

Additionally, we compared the model with the highest BF10 against all

the other models (main effects and interaction). Following standard

conventions, a BF10 > 3 is regarded as positive evidence and a

BF10 > 10 as strong evidence in favor of H1. A BF10 < 0.33 is then seen

as positive evidence and a BF10 < 0.1 as strong evidence in favor of

the null hypothesis (Jarosz & Wiley, 2014). The error rates were calcu-

lated for each participant by taking the mean of incorrect and missed

responses for each direction (horizontal/vertical) and cueing condition

(valid/invalid). Reaction times were defined as the median response

times for each direction and cueing condition. Before the calculation

of the median, we removed the error and post-error trials (to account

for post-error slowing), missed responses, trials with response times

faster than 200 ms, and response times exceeding the 75% quartile

+1.5 * interquartile range (IQR) criterion (number of excluded trials,

invalid left M = 2.79, SD = 2.33; invalid right M = 2.43, SD = 2.25, valid

left M = 8.14, SD = 5.41; valid right M = 7.64, SD = 5.40; invalid down

M = 3.61, SD = 2.25; invalid up M = 3.57, SD = 2.23; valid down

M = 8.21, SD = 4.12; valid up M = 7.43, SD = 4.30).

2.4 | FMRI

We obtained 557 T2* weighted images per run using an echo planar

imaging (EPI) sequence (time of repetition (TR) 2.2 s; echo time

(TE) 30 ms; flip angle 90�). Each image consisted of 36 transverse

slices (recorded in an interleaved and ascending manner), with a voxel

size of 3.1 mm x 3.1 mm x 3.3 mm and 3 mm slice thickness (field of

view 200 mm). We manually discarded the first 5 images of each run

to account for T1 equilibrium artifacts. In addition to the BOLD

images, we obtained a structural T1 anatomical image for each

participant.

The functional and anatomical data were preprocessed using

fMRIPrep (version 1.1.1), a standardized and robust preprocessing

pipeline (Esteban, Markiewicz, et al., 2019) based on Nipype

(Gorgolewski, Burns, et al., 2011) and run as a docker-image. We

followed mostly the standard preprocessing steps (details can be found

in the supplementary material under MRI-preprocessing, S1). The ana-

tomical images (T1) were corrected for intensity and nonuniformity,

skull-stripped, and spatially normalized to the ICBM 152 Nonlinear

Asymmetrical template 2009c (Fonov, Evans, McKinstry, Almli, &

Collins, 2009). Furthermore, brain-tissue segmentation of cerebrospinal

fluid, white-matter, and gray-matter was performed.

The functional data were slice-time and motion-corrected, and

an additional “fieldmap-less” distortion correction was applied (Wang

et al., 2017). The preprocessed functional images were then co-

registered to their anatomical (T1) images and finally warped onto

the MNI template. Frame-wise displacement (Power et al., 2014) was

calculated for each functional run using the implementation of

Nipype.

Additional spatial smoothing of the functional images was per-

formed in SPM12 (version 7,219, Friston, 2007) implemented in

MATLAB 2016b (The MathWorks, Inc., Natick, Massachusetts), using

an 8 mm FWHM Gaussian kernel.

2.5 | Analyses of imaging data

The first level statistical analysis of the data was performed using

SPM12. For group-level analysis, we used the statistical nonparamet-

ric mapping (SnPM) toolbox (version 13.1.07, Nichols & Holmes,

2002). At the single-subject level, we modeled both runs in the same

design matrix using an event-related design (i.e., a stimulus duration

of 0 s), with run-specific intercepts and confounds. As regressors of

interest, we used the target onsets of the two cueing-conditions and

the four possible target positions. This resulted in eight different

regressors for invalid left (iL), invalid right (iR), valid left (vL), valid right

(vR), as well as invalid down (iD), invalid up (iU), valid down (vD), and

valid up (vU) trials. For each run, up to two additional regressors were

added. One regressor was used to account for error and post-error tri-

als and another to account for outlier trials (please, see the behavioral

analysis for the definition of outliers). The regressors' onsets were

convolved with a canonical hemodynamic response function (HRF).

The six movement parameters calculated during realignment and the

frame-wise displacement were included in the model as confounds. A

cosine set accounting for drifts and high-pass filtering was applied fol-

lowing the SPM12 defaults.

We investigated five planned contrasts: (a) The main effect of all

invalid versus valid trials ((iL + iR + iD + iU) – (vL + vR + vD + vU)),

(b and c) two contrasts for direction-specific cueing effects: horizontal

reorientation (iL + iR) – (vL + vR) and vertical reorientation (iD + iU) –

(vD + vU), (d) a contrast for the main effect of direction ((iL + iR + vL +

vR) – (iD + iU + vD + vU)), and (e) a contrast for the interaction of cue-

ing and direction ((iL + iR – vL – vR) – (iD + iU – vD – vU)). Additional

four tests were performed to show the effects of attentional and per-

ceptual modulation in the visual areas by valid targets. These tests

were performed separately for each visual field (vL > vR; vR > vL;

vD > vU; vU > vD).

Group level t-maps were then calculated for each contrast using

one-sample permutation t-tests (25,000 permutations, no variance

smoothing) with a predefined cluster forming threshold of p < .001

uncorrected (SnPM: fast option). We report the results of thresholded

t-maps, using a significance cut-off of p < .05 (FWE corrected at the

predefined cluster level). An overview of global and local maxima was

created using the function “get_clusters_table” implemented in the

Python package Nistats (version 0.0.1b, Abraham et al., 2014).
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2.6 | VOI analyses

As we did not find any significant differences in BOLD amplitudes

between horizontal and vertical directions, and no significant activa-

tions for the interaction of direction and cueing (valid/invalid), we

conducted a more sensitive post hoc VOI based analyses. Here, we

probed bilateral TPJ, FEF, and IPS, which are key regions of the ven-

tral and dorsal attention networks. While these regions do not include

the whole network (see, for example, MFG/IFG), they are the ones we

considered to be most likely influenced by the direction of attention

reorienting due to their proximity to the visual areas. Furthermore, we

limited the regions included in the network, also with regards to the

computational complexity that would arise in the following DCM

analyses.

The global or local maxima corresponding to the six regions of the

condition main effect (Table 1) defined the seed coordinates. These

were passed to Nilearn's (version 0.4.2) “NiftiSpheresMasker” function

(without standardization and detrending)—implemented in Python

3.7—to extract the mean beta values of the eight regressors of interest

using an 8 mm sphere, masked by the thresholded t-map of the main

cueing effect (a).

The mean beta values were averaged over visual fields to obtain

values for the horizontal and vertical directions. For example, the beta

value used for left IPS during invalid horizontal trials consisted of the

average extracted beta values from iL and iR. For each VOI, we ana-

lyzed whether direction or interaction effects were present using

BF_ANOVAs, with the participant as the random factor. We followed

the rationale described for the analysis of the behavioral data.

In addition to the BF_ANOVAs, we used logistic regression to test

whether brain activity differences between cueing-conditions of one

direction were predictive for the cueing effect in the respective other

direction. We again used the mean betas of each participant in the six

VOIs for each of the eight regressors (iL, iR, iD, iU, vL, vR, vD, vU), this

time not collapsing along meridians. Then, we tested whether BOLD

amplitude patterns in the six VOIs of the horizontal run (iL, iR, vL, vR)

were similar enough to differentiate valid and invalid trials of the ver-

tical run (iD, iU, vD, vU), and vice versa. This was done using logistic

regression implemented in scikit-learn (version 0.20.0, Pedregosa

et al., 2011). The logistic regression's performance was first esti-

mated on a per run basis using nested cross-validation. Each run's

data was split into fives, so that every split served as test-data once.

For each round, the remaining splits served as training data and were

again subjected to five-fold cross-validation to find the best regulari-

zation parameter C in the range [10−4, 10−3 …, 103, 104]. The regu-

larization parameter that achieved the highest average accuracy in

the inner cross-validation loop was used to refit the logistic regres-

sion on all of the training data. The run-based model performance

was then defined as the average accuracy over the splits. A similar

approach was used to estimate generalized performance, where

five-fold cross-validation was used on one run to find the best

parameter C, and the accuracy was calculated for the predictions

made on the other run.

As a performance measure, we used permutation tests by shuf-

fling the class-labels (valid or invalid trials), refitting the logistic regres-

sion and then recalculating the accuracies (1,000 permutations). The

permutation p-value then represents the proportion of accuracy

scores that were higher in the random condition than in the original

(Ojala & Garriga, 2010).

2.7 | DCM analyses

In addition to differences in BOLD amplitudes, we were interested in

the cueing-dependent effective connectivity patterns in the horizontal

and vertical runs. To estimate effective connectivity, we used bilinear

DCM (DCM 12, revision 6,755, in MATLAB 2016b). DCM is a state-

space model used to infer the cortical dynamics in time between brain

regions. The approach leads to a generative model that, once inverted,

can be used to simulate neural activity in the network. The state-

change equation of neural states in DCM is described by Equation (1)

(Friston et al., 2003).

˙z= A+
X

j

u j �B
j

 !

� z+C �u ð1Þ

The change in the hidden neural states ˙z is described by the fixed

connectivity matrix A, which represents the coupling between brain

regions in the absence of exogenous modulations (u). The coupling

can be modulated by the j exogenous inputs (u), which are represen-

ted by the parameters in the matrix B (the connections in B are a sub-

set of A). Lastly, the driving input regions, which represent the direct

changes of hidden states, is defined by the matrix C. As we were inter-

ested in how connection strength differs between invalid trials in the

horizontal (u1) as compared to the vertical run (u3), we restricted our

analysis to the parameters in the matrices B1 and B3. Matrices B2 and

B4 were left empty, which means that connections were not modu-

lated by valid trials (neither in the horizontal nor the vertical run).

Since we were interested in investigating potential differences in

reorienting of attention (invalid trials), we assumed that connectivity

between brain regions in valid trials was the same for both runs

(i.e., that all dynamics of valid trials were captured in the baseline con-

nectivity described by the matrix A).

We limited the network analysis to the most representative

regions of the classic models of visual spatial attention and extracted

the time series in the regions of the VOI analyses. The time series of

both runs were concatenated (spm_concat). For the estimation of our

DCMs, we defined a new design matrix for each participant. The tar-

get onsets of all trials served as driving inputs to the DCM. As in the

GLM analysis above, we included the seven motion parameters as nui-

sance regressors and added run specific intercepts (to center the time

series of each run). The VOI coordinates (see Table 1) served as the

center of 12 mm spheres in which the participant's nearest local maxi-

mum was selected. The new coordinates were then used as the center
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of an 8 mm sphere from which the first principle component of the

BOLD signal was extracted. The spheres included only task activated

voxels (threshold p < .05 uncorrected), and the time series were

adjusted for the nuisance regressors and mean activity. We used the

contrast of valid trials against baseline to select the VOIs for bilateral

FEF and IPS, and the contrast invalid trials against baseline for the

TPJ VOIs.

The underlying network structure describing the intrinsic coupling

during the task (A) was defined by fully connected intra-hemispheric

regions and inter-hemispheric connections of homologous regions. All

nodes received all driving-inputs because visual input was carefully

matched across conditions and visual areas were comparably activated.

Hierarchical family-wise Bayesian model selection (BMS)

implemented in the MATLAB VBA-toolbox (version: master/

7ac4470b987796cf4ec9bfb275ab049d5aa97931, Daunizeau, Adam, &

Rigoux, 2014) and subsequent Bayesian Model Averaging (BMA,

implemented in SPM12) were used to find theconnections and parame-

ters in B1 and B3 that best describe our data. In the first step, three

model families were used to investigate whether modulations by inva-

lid trials occurred only in the left, right, or in both hemispheres. The

second class of families was used to decide upon the direction of inter-

hemispheric modulations between left and right IPS. The remaining

modulations, which can be seen in Figure 2, then describe whether TPJ

affects the dorsal attention network or vice versa. The model space

was restricted so that at least one modulation between the dorsal and

ventral attention network had to be present and that there were no

bidirectional modulations. In total, we inverted 72 models per partici-

pant. The modulations by invalid trials in horizontal and vertical runs

(i.e., in B1 and B3) were the same. Hence, while the connectivity param-

eters could differ, the overall modulation structure by invalid trials

stayed the same. Finally, we used BMA on the winning model-family

on a participant level, to get more reliable point estimates for the dif-

ferent connections.

The DCMs were created using mostly default settings for bilinear

DCM. However, we used 36 instead of the 22 time steps in the dis-

cretization of the inversion function to account for slice time correc-

tion. Confounds, which were included in the DCM estimation, were

manually added, so that temporal drifts, represented by a discrete

cosine set, and confounds calculated during the participant's SPM

design matrix were included for each run separately.

We tested whether the modulation by invalid trials differed

between the vertical and horizontal session by calculating the BF10 in

favor of any difference between runs using Bayesian paired t-tests for

each parameter pair in B1 and B3. Testing for differences in effective

connectivity strength between runs, however, does not provide us

with the full picture. For example, it remains unknown how the

parameters interact as a whole within the network. Therefore, using

the generative properties of DCM (and the BMA parameter esti-

mates), we simulated the BOLD signal by swapping the inputs (u)

between the horizontal and the vertical runs (i.e., iH (u1) $ iV (u3), vH

(u2) $ vV (u4)). This approach allowed us to evaluate the specificity/

generality of the parameters for horizontal and vertical reorienting of

attention. If the model performance with the parameters of the

respective other run is comparable to the original data, we can con-

clude that, regardless of specific parameter values, the neural pro-

cesses of invalid trials are similar across runs.

The performance of the swapped model was compared against

random models in which the onset timings of the impulses in u were

kept, but the input streams (u1, u2, u3, u4) were assigned randomly.

We report the proportion of participants with permutation P-values

lower than p < 0.05 in the original and swapped conditions. The

permutation P-values were calculated as the proportion of models

where the root mean squared error (RMSE, Equation 2) was larger in

the original or swapped data than in 1,000 sets of randomly generated

data.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i=1
yi− �yið Þ2

r

ð2Þ

3 | RESULTS

3.1 | Behavioral data

Participants' reaction times in invalid trials were higher than reaction

times in valid trials, both in the horizontal (invalid M = 718.32 ms,

SD = 113.58 ms; valid: M = 674.50 ms, SD = 98.48 ms) and in the ver-

tical run (invalid M = 723.68 ms, SD = 138.74 ms; valid: M =

667.04 ms, SD = 116.52 ms). A similar pattern was observed for error

rates (Figure 3). In the horizontal run, error rates were higher for inva-

lid compared to valid trials (invalid M = 4.46%, SD = 5.37; valid:

M = 3.44%, SD = 3.41), similarly so in the vertical run (invalid

M = 5.54%, SD = 3.56; valid: M = 3.21%, SD = 2.27). The BF_ANOVA

for reaction times yielded strong evidence only for the main effect of

cueing-condition with a BF10 of 17,275.39 against the baseline model.

This model was also superior to the other possible combinations of

the 2x2 design (evidence in favor of the cueing only model against:

direction only BF10 = 87,028.43; both main effects BF10 = 5.05; main

effects plus interaction BF10 = 15.7). The analyses of the error rates

yielded similar results. The model including only a cueing main effect

had the highest BF10 against the intercept model (BF10 = 16.8), and also

stood out against all other possible combinations of factors (evidence in

favor of cueing only against: direction only BF10 = 64.8; both main

effects BF10 = 4.13; against main effects plus interaction BF10 = 8.32). In

sum, these analyses show that the main manipulation of the

experiment—the reorientation of attention in invalid trials—induced the

expected reaction time costs and increased difficulty, as seen in the error

rates. Moreover, they provided positive to strong evidence that neither

the overall level of reaction times nor the reorienting costs after invalid

cueing differed between the horizontal and vertical runs.

3.2 | GLM

Figure 4 depicts the main effect of cueing (invalid > valid cueing, con-

trast (a)) for vertical and horizontal runs combined. The automatic
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calculation of the cluster-forming threshold at p < .001 (cluster

corrected FWE p < .05) yielded a cluster forming threshold of k ≥ 58

voxels. Cluster size in cubic millimeter, global maxima, up to four local

maxima, and their respective t-statistics are provided in Table 1.

Reorienting across both runs activated areas of the dorsal and ventral

frontoparietal attention networks. The largest cluster stretched along

the parietal cortex, with the local maxima located in bilateral IPS and

bilateral precuneus. The next cluster included the right FEF and

extended into the right insular cortex, as well as into the medial and

inferior frontal gyrus. In the right hemisphere, we found a single cluster

in the TPJ. Similar activation patterns were observed in the left hemi-

sphere, with separate clusters in the insular cortex, FEF, IFG, and TPJ.

The run-specific activation maps of reorienting-related activity

are depicted in Figure 5. In the vertical run, clusters surviving the sta-

tistical threshold (k ≥ 57 voxels) were found in bilateral IPS and right

TPJ. Additionally, significant activations were observed in the right

inferior frontal and middle frontal areas, as well as in the insular cor-

tex. The main effect of cueing in the horizontal run revealed clusters

(k ≥ 47) in bilateral FEF and IPS. Cluster size in cubic millimeter, their

global maxima, and the respective t-statistics are provided in Table 2.

Tests for main effects of direction (k ≥ 57) and the interaction of

direction and cueing (k ≥ 47) did not yield any significant voxels sur-

viving the cluster-based FWE correction.

Our analysis of the attentional modulation in valid trials in relation

to the visual fields (Figure 6) revealed activations (k ≥ 52) in left dorsal

and ventral higher-order visual areas (including V4 and V5) for the

contrast of right versus left valid targets. The reverse contrast (left

versus right valid targets), yielded a cluster (k ≥ 53) of significant acti-

vation in ventral parts of right higher-order visual areas. Contrasting

trials with lower visual field targets versus upper visual field valid tar-

gets resulted in a significant cluster (k ≥ 46) in right and dorsal parts

of higher-order visual areas. The reverse contrast did not reveal any

significant results.

The statistical t-maps of the GLM analysis can be found on Neu-

rovault in a thresholded and un-thresholded form (https://identifiers.

org/neurovault.collection:5622).

TABLE 1 Cluster coordinates for reorienting across horizontal and vertical runs

Global maximum Local maxima Side

MNI coordinates

Peak statistic (T) Cluster size (mm3)X Y Z

Precuneus L −8 −70 47 7.06 56,750

Precuneus R 10 −66 57 6.45

Precuneus L −8 −60 51 6.44

IPS† R 38 −51 51 6.18

IPS† L −34 −57 51 6.07

FEF† R 29 2 54 6.72 32,967

Precentral gyrus R 45 9 31 5.51

Precentral gyrus R 54 12 37 5.36

MFG R 51 24 28 5.35

SMA R 10 21 54 6.36 5,994

SMA L −5 24 51 4.83

Insula L −37 21 1 5.72 3,834

FEF† L −37 2 57 5.22 16,822

FEF L −27 −1 54 5.12

Precentral gyrus L −40 2 37 4.87

Precentral gyrus L −46 6 44 4.82

STPJ† L −58 −60 18 4.92 3,029

TPJ L −65 −63 −2 4.59

TG L −74 −32 −2 4.81 2,126

MTG L −58 −29 −5 4.08

TPJ† R 60 −41 1 4.53 2,674

SMG L −62 −63 31 3.58 96

Temporal pole L −37 21 −22 3.53 96

Note: Global and up to four local maxima's coordinates and peak t-statistics of the thresholded statistical maps. Coordinates annotated with a dagger (†)

were included in the further VOI-based and DCM analyses. Rounded MNI coordinates and cluster sizes were estimated using Nistats' get_cluster_table.

Abbreviations: FEF, frontal eye fields; IPS, intraparietal sulcus; MFG, middle frontal gyrus; SMA, supplementary motor area; TPJ, temporoparietal junction;

TG, temporal gyrus; MTG, middle temporal gyrus; SMG, supramarginal gyrus.
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F IGURE 3 Results for the behavioral data. In the upper part of the figure, boxplots show the distribution of the data (the median,
25th, and 75th percentile, whiskers indicate minimum and maximum, outliers are determined using the 1.5 * IQR criterion). Swarm plots
were used to indicate individual data points in the sample. The bar graphs in the lower part indicate the Bayes factor (in logarithmic scale)
against an intercept model. Model1—cueing only; Model 2—direction only; Model 3—cueing + direction; Model 4—cueing + direction +
cueing × direction

F IGURE 2 A schematic of the model space used in the fMRI analysis. The first model family comparison revealed that modulations between
IPS and TPJ and FEF and TPJ were present in both hemispheres (models not shown). Hence, only the models of the bilateral family are shown.
Dotted lines are used for unilateral and solid lines for bilateral connections. The second model family comparison favored models with a
unidirectional connection from right IPS to left IPS (see left upper panel). The remaining model combinations based on connections between IPS-
TPJ and FEF-TPJ were summarized using BMA. The model basis is shown in the lower part of the figure, indicating the fixed connections. BMA,
Bayesian model average; FEF, frontal eye-fields; IPS, intraparietal sulcus; TPJ, temporoparietal junction
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3.3 | VOI analyses

As a potentially more sensitive approach, we extracted the regression

(beta) weights of the main GLM analysis in six regions that showed

significant reorienting related activity (see Table 1). The BF_ANOVA

(following the same rationale as in the behavioral analysis, see

Figure 7) yielded the highest evidence for the model including only

the main effect of cueing in all six regions (BF10 for left IPS = 33.13;

right IPS BF10 = 45.93; left FEF BF10 = 10.91; right FEF BF10 = 31.44;

left TPJ BF10 = 5.92; right TPJ BF10 = 9.04). Comparing the cueing-

only effect against the main effect of direction, both main effects, and

main effects plus interaction (Table 3), showed that there was only

positive evidence in favor of the cueing main effect (BF10 > 3) in most

of the VOIs. In the right IPS VOI, however, there was only anecdotal

evidence (BF10 = 1.07) favoring the cueing-only model against the

model including both main effects, meaning that we cannot convinc-

ingly exclude an additional effect of direction for this region.

Using logistic regression, we tested whether the average beta

weights of the eight regressors (valid and invalid trials for all target

locations) could predict the cueing-condition (valid/invalid trails) in

the respective other run. The prediction was significant for each

run with an accuracy of 62.2% (p = .021) for the horizontal and

with an accuracy of 62.3% (p = .021) for the vertical run. More

importantly, the model trained on the horizontal run generalized to

the vertical run with an accuracy of 59.3% (p = .016), and the

model trained on the vertical run generalized to the horizontal run

with an accuracy of 62.0% (p = .006). These results support the

observation that the activation patterns in the six VOIs were highly

similar, so that those predictive models generalized well across the

two runs.

3.4 | DCM analyses

The DCM analysis was carried out using data from 26 of the

remaining 27 participants, as for one participant, the coordinates for

the left TPJ VOI could not be established. To select the DCM with the

highest evidence of generating the network activity in our data, we

F IGURE 5 Statistical maps of the
reorienting (invalid > valid) in each run.
The thresholded maps for the two runs
were projected onto the freesurfer
inflated surface template (fsavg5) using
nilearn

F IGURE 4 Statistical map for the
reorienting (invalid > valid) across
horizontal and vertical runs. The
thresholded map was projected onto
the freesurfer inflated surface
templates (fsavg5) using nilearn
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applied a hierarchical familywise model selection. The family with

modulations in both hemispheres was slightly superior (exceedance

probability [ep] = .54) when compared to the other two families (left

lateralization ep = .46, right lateralization ep = .00). This family was

then further subdivided into three families consisting of models

describing the direction of the interhemispheric IPS connections. The

model family with a modulation from right IPS to left IPS had the

highest evidence with an ep of .76 (ep IPS right to IPS left = .00; ep

bidirectional modulation = .24). Finally, the models in this winning

family were subjected to BMA. The participant-specific DCM models

with averaged parameter estimates had a good to moderate fit to the

data, with a mean coefficient of determination (R2) of 33.74

(SD = 10.39, range 16.65 to 63.33).

The parameters for invalid horizontal (B1) and invalid vertical (B3)

trials were compared using Bayesian paired t-tests. Most modulations

provided positive evidence for an absence of differences between

both runs (Table 4). For the connections from left TPJ to left FEF, left

FEF to left TPJ, and right FEF to right TPJ, there was only anecdotal

F IGURE 6 Attentional modulation by the direction of attention in valid trials (i.e., targets appearing in the left, right, upper, and lower visual
fields)

TABLE 2 Cluster coordinates for reorienting-related activity in horizontal and vertical runs

Global maximum Side

MNI coordinates

Peak statistic (T) Cluster size (mm)X Y Z

Invalid > valid horizontal

Angular gyrus R 10 −60 51 5.23 2,578

Parietal cortex L −43 −51 47 5.12 4,737

FEF L −24 9 57 4.94 6,413

FEF R 29 6 51 4.89 2,835

SMA L −5 21 51 4.55 2,964

Precuneus L −12 −60 51 4.53 2062

Invalid > valid vertical

Precentral R 45 6 31 5.7 4,382

TPJ R 60 −51 21 5.36 1,869

Insula R 29 27 −12 5.03 2,352

Temporal R 63 −35 −9 4.89 2,159

Parietal cortex L −49 −51 41 4.65 8,153

Parietal cortex R 20 −73 54 4.56 9,700

Precuneus L −8 −73 47 4.22 1,353

Lingual gyrus L −2 −76 54 3.48 32

Note: Only the coordinates of the global maxima in the main clusters are reported.

Abbreviations: FEF, frontal eye fields; SMA, supplementary motor area; TPJ, temporoparietal junction.
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evidence against a difference in parameters (M = 0.12, SD = 0.49,

BF10 = 0.44; M = 0.13, SD = 0.47, BF10 = 0.48; M = −0.3, SD = 0.84,

BF10 = 0.90).

Further interrogating the DCMs for each participant revealed that

DCMs based on the BMA (RMSE: M = 0.35, SD = 0.08) performed in

general better than the random models (RMSE: M = 0.41, SD = 4.00,

all p < .001, except for one with p = .006). Swapping the vertical and

horizontal inputs (iH (u1) $ iV (u3), vH (u2) $ vV (u4)) led to slightly

worse performance in each model (R2: M = 33.09, SD = 10.42), when

compared to the original data. Still, the swapped model was superior

to a random input model for most participants (RMSE: M = 0.37,

SD = 0.09). Using a cutoff of p < .05 (i.e., 5% of random models had a

F IGURE 7 Results of the VOI based analysis. For each of the six VOIs, boxplots show the distribution of the data (the median, 25th, and 75th
percentile, whiskers indicate minimum and maximum, outliers are determined using the 1.5 * IQR criterion). Swarm plots were used to show individual
data points in the sample. The bar graphs below the box plots indicate the Bayes factor (in logarithmic scale) against an intercept model. VOIs are
displayed separately for left- and right-hemispheric regions and in the order IPS, FEF, TPJ. Model1—cueing only; Model 2—direction only; Model 3—
cueing + direction; Model 4—cueing + direction + cueing × direction. FEF, frontal eye-fields; IPS, intraparietal sulcus; TPJ, temporoparietal junction
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lower RMSE than the swapped model), the model with swapped

inputs performed better than the random input model in 18 out of

26 participants (69%).

4 | DISCUSSION

This fMRI study used two versions of a spatial cueing paradigm to

compare the behavioral and neural mechanisms underlying attentional

reorienting along the horizontal and vertical meridians. Regardless of

cueing direction, our experimental procedures induced the well-

established reaction time costs in responses following invalid cues

when compared to valid cues (Hedge, Powell, & Sumner, 2017).

Attentional reorienting behavior was comparable within participants

for the vertical and the horizontal direction, suggesting that the costs

of reorienting spatial attention are unaffected by directionality. Along

the same lines, the analysis of the fMRI data using a GLM, a VOI-

based approach, and DCM analyses revealed no evidence for

direction-sensitive effects in the higher-level regions of the atten-

tional networks.

To tackle the difficult task of quantifying the absence of an effect

of direction or interaction of direction and cueing, we applied, wher-

ever possible, Bayesian inference methods like Bayes factor ANOVAs

and Bayesian t-tests to get an estimate of the likelihood of the pres-

ence (or absence) of the effects of interest. In the case of Bayes factor

ANOVAs, this provided us with the possibility to compare the main

effect of cueing against other possible interactions and main effects.

For the behavioral measures, this analysis revealed evidence in favor

of a model including an effect of attentional reorienting only, without

additional interactions. Similar results were observed in the fMRI ana-

lyses suggesting a similar neural mechanism of attentional reorienting

in different spatial directions.

In addition to statistical analysis, we were also able to show

that predictive models trained on BOLD data related to attentional

reorienting along one meridian generalized well to the other. In other

words, the effect of direction was not only statistically insignificant but

also had no impact on the generalizability of statistical models—so that

the cueing condition in one run could be successfully predicted by the

model from the respective other run. This novel analysis approach,

which does not rely on classical inferential statistics based on p-values,

strongly suggests that the higher-order neural mechanisms underlying

attentional reorienting are insensitive to different spatial directions.

Along the same lines, we also demonstrate that the network

dynamics of a DCM between runs were so similar that they could be

used to reproduce the BOLD activity patterns induced by attentional

reorienting in the respective other spatial direction.

Our results replicate the findings of Macaluso and Patria (2007),

who also did not find any significant differences between vertical and

horizontal reorienting in a similar experimental set-up using classical

inferential statistics. However, our study extends these findings in

multiple ways since we considerably increased statistical power by

including more than twice the number of participants in our study and

employed the Bayesian and predictive approaches described above.

Still, other studies contrasting vertical and horizontal stimulus lay-

outs have shown direction-sensitive effects for behavioral and neuro-

imaging data. For example, differential activity in superior parietal and

frontal areas was found in fMRI studies using an attentional cueing

paradigm (Mao et al., 2007), or vertical and horizontal saccades and

anti-saccades (Lemos et al., 2016, 2017).

One reason for these discrepancies might be that horizontal and

vertical asymmetries critically depend on the basic perceptual proper-

ties of the visual system. For example, it has been argued that hori-

zontal and vertical asymmetries (Rizzolatti, Riggio, Dascola, &

Umiltá, 1987) are particularly evident at high visual eccentricities

(Abrams, Nizam, & Carrasco, 2012; Carrasco & Chang, 1995), where

the different physiological properties of different parts of the retina

become perceptually and behaviorally relevant (Carrasco, Talgar, &

Cameron, 2001; Jóhannesson, Tagu, & Kristjánsson, 2018). In our cur-

rent study, the stimuli were presented at relatively small eccentricities

so that the stimulus configurations may have minimized the impact of

early retinal asymmetries. At the same time, stimuli were located dis-

tant enough to allow for a specific attentional modulation in cortical

visual areas, as indicated by selective functional modulations in

response to valid target stimuli. Our experimental design controlled

TABLE 3 Summary statistics VOI-based BF_ANOVA on the regression (beta) weights

VOI

Invalid Valid BF_ANOVA

Horizontal Vertical Horizontal Vertical
Model 1 versus

M ± SD M ± SD M ± SD M ± SD Model 2 Model 3 Model 4

IPS L 4.97 ± 3.60 5.19 ± 2.64 4.24 ± 2.93 4.22 ± 2.44 150.60 4.54 15.73

IPS R 3.27 ± 2.13 3.80 ± 1.96 2.69 ± 1.79 2.91 ± 1.63 61.47 1.07 3.24

FEF L 3.64 ± 2.10 3.53 ± 2.11 2.80 ± 1.77 2.90 ± 2.02 48.62 4.98 15.78

FEF R 3.07 ± 1.71 2.92 ± 1.67 2.47 ± 1.41 2.43 ± 1.51 135.10 4.42 15.35

TPJ L 1.60 ± 1.61 1.56 ± 1.66 1.02 ± 1.49 0.85 ± 1.54 26.72 4.51 15.31

TPJ R 2.10 ± 2.33 1.93 ± 1.86 1.35 ± 1.95 1.31 ± 1.74 39.99 4.36 16.10

Note: Each row displays the mean (M) and standard deviation (SD) for each of the six VOIs. The BFs for the comparison of Model 1 versus the three other

models are shown. These BF10s indicate how much more likely Model 1 is, compared to the other models. Model1—cueing only; Model 2—direction only;

Model 3—cueing + direction; Model 4—cueing + direction + cueing × direction.
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for early bottom-up influences and hence allowed determining corti-

cal effects related to top-down control.

However, despite carefully controlling for bottom-up influences

and using an attentional cueing task, Mao et al. (2007) reported a

horizontal-vertical asymmetry in brain activity and behavior. A criti-

cal difference between this and our study concerns the informational

value of the cues. In Mao et al.'s study, the cues were always valid.

Hence, attentional reorienting could not be investigated. The cues in

the present study were probabilistic (i.e., not always valid). This

aspect is relevant for the level of uncertainty involved in attentional

control since a higher level of uncertainty induces a preparedness

for reallocation of visual attention. Eckstein, Shimozaki, and Abbey

(2002) showed that perceptual properties of the target stimulus

and its attentional enhancement do not modulate reorientation

costs. Instead, reorientation costs were rather driven by expecta-

tions. This view is in line with other studies manipulating the per-

centage of cue validity in similar location-cueing paradigms and

reporting effects on response times and brain activity in dorsal

and ventral attentional networks. For instance, increased uncer-

tainty during invalid trials increases activity in the ventral atten-

tion network (Vossel et al., 2012; Vossel, Mathys, Stephan, &

Friston, 2015) and decreases activity in the dorsal network

(Weissman & Prado, 2012).

Similarly, higher activity in the ventral network correlates with

worse behavioral performance in valid trials (Wen, Yao, Liu, &

Ding, 2012). It has been suggested that the ventral network, and

particularly the right TPJ, seems to be more generally involved in

tracking and updating of expectations. Moreover, there are stroke

patients with lesions to the right TPJ who display impaired rule

changing and belief updating behavior in nonspatial tasks (Danckert,

Stottinger, Quehl, & Anderson, 2012; Stöttinger et al., 2014; for a

review on different TPJ involvements see Geng & Vossel, 2013).

Hence, the processes critically related to attentional reorienting in

the current study might not necessarily be location-specific but

might represent higher-order functions such as the processing of

expectancy violations.

While the previous studies focused on the right TPJ, we

observed that invalid cueing heightens TPJ activation in both hemi-

spheres. Similar bilateral involvement of the TPJ has been described

previously (Beume et al., 2017; Macaluso & Patria, 2007; Silvetti

et al., 2016). However, the exact functional role of left- and right-

hemispheric areas in the ventral network might differ (Dugué,

Merriam, Heeger, & Carrasco, 2018).

The spatial independence of attention networks observed in the

present study seems to contradict clinical data: Patients with ventral

parietal lesions to one hemisphere are not able to reorient attention

to an invalidly or neutrally cued target in the visual field contralateral

to the lesion (Posner, Walker, Friedrich, & Rafal, 1984). Since the

ventral network is generally assumed to respond to invalid trials

irrespective of the target hemifield, such behavior may reflect func-

tional impairment of the dorsal system or dorsal-ventral interactions

(Corbetta, Kincade, Lewis, Snyder, & Sapir, 2005). TMS studies pro-

vide strong evidence for spatially selective effects in the dorsalT
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network. For example, a concurrent TMS-fMRI study, where partici-

pants attended to stimuli in the left or right visual field, showed that

TMS over posterior parietal cortices could modulate activations in the

contralateral extrastriate cortex (Blankenburg et al., 2010). Similarly,

TMS over left or right FEF led to top-down modulation of ipsilateral

extrastriate areas (Duecker, Formisano, & Sack, 2013; Silvanto,

Lavie, & Walsh, 2006). Still, these effects may not be purely symmet-

ric, as right IPS and FEF have been shown to modulate not only the

contralateral, but also the ipsilateral visual areas in some studies

(Sheremata & Silver, 2015; Silvanto et al., 2006). Please note that we

did not explicitly test for hemispheric asymmetries following left or

right target displays in the present study. We used bilateral stimulus

layouts, which have been shown to yield higher activation in superior

parietal areas due to attention competition between the stimuli

(Molenberghs, Gillebert, Peeters, & Vandenberghe, 2008). While we

can show in this paradigm with a contrast of leftward versus right-

ward validly cued attention that the stimulus display evoked

direction-specific activation in extrastriate areas, there were no signs

of asymmetry in superior-parietal areas. Our DCM analysis, however,

provides subtle evidence for a more dominant role of right IPS, by

favoring a modulation from right to left IPS, over modulations from

left to right IPS.

Unilateral lesions to the ventral system may, therefore, lead to

dysfunction and imbalance in the reallocation of attention in the dor-

sal system, resulting in attentional deficits in the horizontal spatial

dimension in patients with neglect (Corbetta & Shulman, 2011;

Macaluso & Patria, 2007). The allocation and reorientation of atten-

tion along the vertical meridian, on the other hand, may be more

robust to unilateral lesions, as a central stimulus display would be

represented in both hemispheres. Following this line of thought,

bilateral lesions should be necessary to cause altitudinal neglect,

and this has indeed been observed in a few patients with bilateral

lesions to temporal areas (Shelton et al., 1990) and parietal areas

(Rapcsak, Cimino, & Heilman, 1988).

Further experiments will be necessary to investigate whether the

dorsal and ventral attention network interact in the hypothesized

way. Despite extensive work using fMRI, for example on the direction

coding in IPS (Molenberghs et al., 2008; Vandenberghe et al., 2005),

as well as attention-modulated receptive fields in the dorsal attention

network (Sheremata & Silver, 2015), to date it remains to be deter-

mined whether directional coding can also be found in ventral parietal

areas.

In conclusion, we observed that reorienting visuospatial attention

along the horizontal and vertical meridians relies on very similar neural

processes in frontoparietal areas of the dorsal and ventral attention

network. The absence of direction-specific effects in the ventral

attention network, together with the bilateral involvement of the TPJ,

corroborates the notion that this network is involved in higher-order

cognitive processes such as violations of prior expectations, rather

than being dependent on stimulus properties, such as its spatial loca-

tion (Geng & Vossel, 2013).These findings also have important impli-

cations for our understanding of the neurobiology underlying

impairments of spatial processing after brain damage. In particular,

they suggest that deficits in orienting and reorienting attention along

the horizontal meridian as commonly observed in stroke patients with

spatial neglect are caused by disrupted interactions between higher-

level attention networks and sensory areas, rather than by cir-

cumscribed damage of directionally tuned brain regions.
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