000877538 001__ 877538
000877538 005__ 20210130005113.0
000877538 0247_ $$2doi$$a10.1039/D0GC00090F
000877538 0247_ $$2ISSN$$a1463-9262
000877538 0247_ $$2ISSN$$a1463-9270
000877538 0247_ $$2Handle$$a2128/25861
000877538 0247_ $$2altmetric$$aaltmetric:76090494
000877538 0247_ $$2WOS$$aWOS:000537870500030
000877538 037__ $$aFZJ-2020-02274
000877538 041__ $$aEnglish
000877538 082__ $$a540
000877538 1001_ $$0P:(DE-HGF)0$$aLaemont, Andreas$$b0
000877538 245__ $$aCovalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO 2 to CO at low overpotential
000877538 260__ $$aCambridge$$bRSC$$c2020
000877538 3367_ $$2DRIVER$$aarticle
000877538 3367_ $$2DataCite$$aOutput Types/Journal article
000877538 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602246059_12680
000877538 3367_ $$2BibTeX$$aARTICLE
000877538 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877538 3367_ $$00$$2EndNote$$aJournal Article
000877538 520__ $$aElectrochemical reduction of CO2 provides a way to generate base chemicals from an abundant C1-source under mild conditions, whilst at the same time mitigating CO2 emissions. In this work, a novel class of tailorable, porous electrocatalysts for this process is proposed. Covalent triazine frameworks (CTFs) are grown in situ onto functionalized multiwalled carbon nanotubes. Hydroxyl groups decorating the surface of the multiwalled carbon nanotubes facilitate intimate contact between the carbon nanotubes and CTF, thus promoting efficient electron transfer. The novel hybrid materials generate CO with a faradaic efficiency up to 81% at an overpotential of 380 mV. The selectivity of the electrocatalysts could be linked to the amount of nitrogen present within the framework.
000877538 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877538 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000877538 588__ $$aDataset connected to CrossRef
000877538 7001_ $$00000-0001-9091-9229$$aAbednatanzi, Sara$$b1
000877538 7001_ $$00000-0001-9655-6019$$aDerakshandeh, Parviz Gohari$$b2
000877538 7001_ $$00000-0002-7585-9616$$aVerbruggen, Florian$$b3
000877538 7001_ $$00000-0002-8976-0385$$aFiset, Erika$$b4
000877538 7001_ $$0P:(DE-HGF)0$$aQin, Qing$$b5
000877538 7001_ $$00000-0003-4020-3606$$aVan Daele, Kevin$$b6
000877538 7001_ $$0P:(DE-Juel1)174171$$aMeledina, Maria$$b7
000877538 7001_ $$0P:(DE-HGF)0$$aSchmidt, Johannes$$b8
000877538 7001_ $$00000-0003-2377-1214$$aOschatz, Martin$$b9
000877538 7001_ $$00000-0002-1248-479X$$aVan Der Voort, Pascal$$b10
000877538 7001_ $$00000-0001-8738-7778$$aRabaey, Korneel$$b11
000877538 7001_ $$00000-0002-8395-7558$$aAntonietti, Markus$$b12
000877538 7001_ $$00000-0001-5538-0408$$aBreugelmans, Tom$$b13
000877538 7001_ $$00000-0002-7753-3935$$aLeus, Karen$$b14$$eCorresponding author
000877538 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D0GC00090F$$gVol. 22, no. 10, p. 3095 - 3103$$n10$$p3095 - 3103$$tGreen chemistry$$v22$$x1463-9270$$y2020
000877538 8564_ $$uhttps://juser.fz-juelich.de/record/877538/files/d0gc00090f.pdf
000877538 8564_ $$uhttps://juser.fz-juelich.de/record/877538/files/Leus-manuscript.pdf$$yPublished on 2020-02-13. Available in OpenAccess from 2021-02-13.
000877538 8564_ $$uhttps://juser.fz-juelich.de/record/877538/files/Leus-manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-13. Available in OpenAccess from 2021-02-13.
000877538 8564_ $$uhttps://juser.fz-juelich.de/record/877538/files/d0gc00090f.pdf?subformat=pdfa$$xpdfa
000877538 909CO $$ooai:juser.fz-juelich.de:877538$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000877538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174171$$aForschungszentrum Jülich$$b7$$kFZJ
000877538 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877538 9141_ $$y2020
000877538 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877538 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2018$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2018$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-02$$wger
000877538 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-02$$wger
000877538 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000877538 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-02$$wger
000877538 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000877538 920__ $$lyes
000877538 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000877538 980__ $$ajournal
000877538 980__ $$aVDB
000877538 980__ $$aUNRESTRICTED
000877538 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000877538 9801_ $$aFullTexts