001     877538
005     20210130005113.0
024 7 _ |a 10.1039/D0GC00090F
|2 doi
024 7 _ |a 1463-9262
|2 ISSN
024 7 _ |a 1463-9270
|2 ISSN
024 7 _ |a 2128/25861
|2 Handle
024 7 _ |a altmetric:76090494
|2 altmetric
024 7 _ |a WOS:000537870500030
|2 WOS
037 _ _ |a FZJ-2020-02274
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Laemont, Andreas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO 2 to CO at low overpotential
260 _ _ |a Cambridge
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602246059_12680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrochemical reduction of CO2 provides a way to generate base chemicals from an abundant C1-source under mild conditions, whilst at the same time mitigating CO2 emissions. In this work, a novel class of tailorable, porous electrocatalysts for this process is proposed. Covalent triazine frameworks (CTFs) are grown in situ onto functionalized multiwalled carbon nanotubes. Hydroxyl groups decorating the surface of the multiwalled carbon nanotubes facilitate intimate contact between the carbon nanotubes and CTF, thus promoting efficient electron transfer. The novel hybrid materials generate CO with a faradaic efficiency up to 81% at an overpotential of 380 mV. The selectivity of the electrocatalysts could be linked to the amount of nitrogen present within the framework.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abednatanzi, Sara
|0 0000-0001-9091-9229
|b 1
700 1 _ |a Derakshandeh, Parviz Gohari
|0 0000-0001-9655-6019
|b 2
700 1 _ |a Verbruggen, Florian
|0 0000-0002-7585-9616
|b 3
700 1 _ |a Fiset, Erika
|0 0000-0002-8976-0385
|b 4
700 1 _ |a Qin, Qing
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Van Daele, Kevin
|0 0000-0003-4020-3606
|b 6
700 1 _ |a Meledina, Maria
|0 P:(DE-Juel1)174171
|b 7
700 1 _ |a Schmidt, Johannes
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Oschatz, Martin
|0 0000-0003-2377-1214
|b 9
700 1 _ |a Van Der Voort, Pascal
|0 0000-0002-1248-479X
|b 10
700 1 _ |a Rabaey, Korneel
|0 0000-0001-8738-7778
|b 11
700 1 _ |a Antonietti, Markus
|0 0000-0002-8395-7558
|b 12
700 1 _ |a Breugelmans, Tom
|0 0000-0001-5538-0408
|b 13
700 1 _ |a Leus, Karen
|0 0000-0002-7753-3935
|b 14
|e Corresponding author
773 _ _ |a 10.1039/D0GC00090F
|g Vol. 22, no. 10, p. 3095 - 3103
|0 PERI:(DE-600)2006274-6
|n 10
|p 3095 - 3103
|t Green chemistry
|v 22
|y 2020
|x 1463-9270
856 4 _ |u https://juser.fz-juelich.de/record/877538/files/d0gc00090f.pdf
856 4 _ |y Published on 2020-02-13. Available in OpenAccess from 2021-02-13.
|u https://juser.fz-juelich.de/record/877538/files/Leus-manuscript.pdf
856 4 _ |y Published on 2020-02-13. Available in OpenAccess from 2021-02-13.
|x pdfa
|u https://juser.fz-juelich.de/record/877538/files/Leus-manuscript.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877538/files/d0gc00090f.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877538
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174171
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GREEN CHEM : 2018
|d 2020-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GREEN CHEM : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21