000877539 001__ 877539
000877539 005__ 20230522110531.0
000877539 0247_ $$2doi$$a10.1016/j.ymeth.2020.06.003
000877539 0247_ $$2ISSN$$a1046-2023
000877539 0247_ $$2ISSN$$a1095-9130
000877539 0247_ $$2Handle$$a2128/27387
000877539 0247_ $$2altmetric$$aaltmetric:83953364
000877539 0247_ $$2pmid$$a32522530
000877539 0247_ $$2WOS$$aWOS:000631883800011
000877539 037__ $$aFZJ-2020-02275
000877539 082__ $$a540
000877539 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author$$ufzj
000877539 245__ $$aRadiomics in neuro-oncology: Basics, workflow, and applications
000877539 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000877539 3367_ $$2DRIVER$$aarticle
000877539 3367_ $$2DataCite$$aOutput Types/Journal article
000877539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646035135_1933
000877539 3367_ $$2BibTeX$$aARTICLE
000877539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877539 3367_ $$00$$2EndNote$$aJournal Article
000877539 520__ $$aOver the last years, the amount, variety, and complexity of neuroimaging data acquired in patients with brain tumors for routine clinical purposes and the resulting number of imaging parameters have substantially increased. Consequently, a timely and cost-effective evaluation of imaging data is hardly feasible without the support of methods from the field of artificial intelligence (AI). AI can facilitate and shorten various time-consuming steps in the image processing workflow, e.g., tumor segmentation, thereby optimizing productivity. Besides, the automated and computer-based analysis of imaging data may help to increase data comparability as it is independent of the experience level of the evaluating clinician. Importantly, AI offers the potential to extract new features from the routinely acquired neuroimages of brain tumor patients. In combination with patient data such as survival, molecular markers, or genomics, mathematical models can be generated that allow, for example, the prediction of treatment response or prognosis, as well as the noninvasive assessment of molecular markers. The subdiscipline of AI dealing with the computation, identification, and extraction of image features, as well as the generation of prognostic or predictive mathematical models, is termed radiomics. This review article summarizes the basics, the current workflow, and methods used in radiomics with a focus on feature-based radiomics in neuro-oncology and provides selected examples of its clinical application.
000877539 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000877539 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000877539 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x2
000877539 588__ $$aDataset connected to CrossRef
000877539 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b1$$ufzj
000877539 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b2$$ufzj
000877539 7001_ $$0P:(DE-Juel1)132315$$aHeinzel, Alexander$$b3$$ufzj
000877539 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian P.$$b4$$ufzj
000877539 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b5$$ufzj
000877539 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b6$$ufzj
000877539 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b7$$ufzj
000877539 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b8$$ufzj
000877539 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9$$ufzj
000877539 773__ $$0PERI:(DE-600)1471152-7$$a10.1016/j.ymeth.2020.06.003$$gp. S1046202319303172$$p112-121$$tMethods$$v188$$x1046-2023$$y2021
000877539 8564_ $$uhttps://juser.fz-juelich.de/record/877539/files/Lohmann_2020_Post%20Print_Methods_Radiomics%20in%20Neuro_Oncology_Basics%2C%20Workflow%2C%20and%20Applications.pdf$$yPublished on 2020-06-06. Available in OpenAccess from 2021-06-06.
000877539 8564_ $$uhttps://juser.fz-juelich.de/record/877539/files/Lohmann_2020_Post%20Print_Methods_Radiomics%20in%20Neuro_Oncology_Basics%2C%20Workflow%2C%20and%20Applications.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-06-06. Available in OpenAccess from 2021-06-06.
000877539 909CO $$ooai:juser.fz-juelich.de:877539$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b1$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b2$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132315$$aForschungszentrum Jülich$$b3$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b4$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b5$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b6$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
000877539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
000877539 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000877539 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000877539 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000877539 9141_ $$y2021
000877539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-02
000877539 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877539 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHODS : 2018$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000877539 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-02$$wger
000877539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000877539 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000877539 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000877539 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000877539 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000877539 980__ $$ajournal
000877539 980__ $$aVDB
000877539 980__ $$aI:(DE-Juel1)INM-4-20090406
000877539 980__ $$aI:(DE-Juel1)INM-11-20170113
000877539 980__ $$aI:(DE-82)080010_20140620
000877539 980__ $$aI:(DE-Juel1)INM-3-20090406
000877539 980__ $$aUNRESTRICTED
000877539 9801_ $$aFullTexts