Hauptseite > Publikationsdatenbank > Radiomics in neuro-oncology: Basics, workflow, and applications > print |
001 | 877539 | ||
005 | 20230522110531.0 | ||
024 | 7 | _ | |a 10.1016/j.ymeth.2020.06.003 |2 doi |
024 | 7 | _ | |a 1046-2023 |2 ISSN |
024 | 7 | _ | |a 1095-9130 |2 ISSN |
024 | 7 | _ | |a 2128/27387 |2 Handle |
024 | 7 | _ | |a altmetric:83953364 |2 altmetric |
024 | 7 | _ | |a 32522530 |2 pmid |
024 | 7 | _ | |a WOS:000631883800011 |2 WOS |
037 | _ | _ | |a FZJ-2020-02275 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Radiomics in neuro-oncology: Basics, workflow, and applications |
260 | _ | _ | |a Orlando, Fla. |c 2021 |b Academic Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1646035135_1933 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Over the last years, the amount, variety, and complexity of neuroimaging data acquired in patients with brain tumors for routine clinical purposes and the resulting number of imaging parameters have substantially increased. Consequently, a timely and cost-effective evaluation of imaging data is hardly feasible without the support of methods from the field of artificial intelligence (AI). AI can facilitate and shorten various time-consuming steps in the image processing workflow, e.g., tumor segmentation, thereby optimizing productivity. Besides, the automated and computer-based analysis of imaging data may help to increase data comparability as it is independent of the experience level of the evaluating clinician. Importantly, AI offers the potential to extract new features from the routinely acquired neuroimages of brain tumor patients. In combination with patient data such as survival, molecular markers, or genomics, mathematical models can be generated that allow, for example, the prediction of treatment response or prognosis, as well as the noninvasive assessment of molecular markers. The subdiscipline of AI dealing with the computation, identification, and extraction of image features, as well as the generation of prognostic or predictive mathematical models, is termed radiomics. This review article summarizes the basics, the current workflow, and methods used in radiomics with a focus on feature-based radiomics in neuro-oncology and provides selected examples of its clinical application. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |x 0 |f POF IV |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |x 1 |f POF IV |
536 | _ | _ | |a DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie |0 G:(GEPRIS)428090865 |c 428090865 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 1 |u fzj |
700 | 1 | _ | |a Kocher, Martin |0 P:(DE-Juel1)173675 |b 2 |u fzj |
700 | 1 | _ | |a Heinzel, Alexander |0 P:(DE-Juel1)132315 |b 3 |u fzj |
700 | 1 | _ | |a Filss, Christian P. |0 P:(DE-Juel1)141877 |b 4 |u fzj |
700 | 1 | _ | |a Stegmayr, Carina |0 P:(DE-Juel1)156479 |b 5 |u fzj |
700 | 1 | _ | |a Mottaghy, Felix M. |0 P:(DE-Juel1)132318 |b 6 |u fzj |
700 | 1 | _ | |a Fink, Gereon R. |0 P:(DE-Juel1)131720 |b 7 |u fzj |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 8 |u fzj |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 9 |u fzj |
773 | _ | _ | |a 10.1016/j.ymeth.2020.06.003 |g p. S1046202319303172 |0 PERI:(DE-600)1471152-7 |p 112-121 |t Methods |v 188 |y 2021 |x 1046-2023 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877539/files/Lohmann_2020_Post%20Print_Methods_Radiomics%20in%20Neuro_Oncology_Basics%2C%20Workflow%2C%20and%20Applications.pdf |y Published on 2020-06-06. Available in OpenAccess from 2021-06-06. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877539/files/Lohmann_2020_Post%20Print_Methods_Radiomics%20in%20Neuro_Oncology_Basics%2C%20Workflow%2C%20and%20Applications.pdf?subformat=pdfa |x pdfa |y Published on 2020-06-06. Available in OpenAccess from 2021-06-06. |
909 | C | O | |o oai:juser.fz-juelich.de:877539 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173675 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132315 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)141877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)156479 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132318 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131777 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 1 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Neuroimaging |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-02 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b METHODS : 2018 |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-02 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|