000877550 001__ 877550
000877550 005__ 20240709082131.0
000877550 0247_ $$2doi$$a10.1016/j.compchemeng.2019.106598
000877550 0247_ $$2ISSN$$a0098-1354
000877550 0247_ $$2ISSN$$a1873-4375
000877550 0247_ $$2Handle$$a2128/25071
000877550 0247_ $$2WOS$$aWOS:000498396100021
000877550 037__ $$aFZJ-2020-02285
000877550 082__ $$a660
000877550 1001_ $$0P:(DE-HGF)0$$aSchäfer, Pascal$$b0
000877550 245__ $$aWavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices
000877550 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877550 3367_ $$2DRIVER$$aarticle
000877550 3367_ $$2DataCite$$aOutput Types/Journal article
000877550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592317408_28260
000877550 3367_ $$2BibTeX$$aARTICLE
000877550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877550 3367_ $$00$$2EndNote$$aJournal Article
000877550 520__ $$aUsing nonlinear process models in discrete-time scheduling typically prohibits long planning horizons with fine temporal discretizations. Therefore, we propose an adaptive grid algorithm tailored for scheduling subject to time-variable electricity prices. The scheduling problem is formulated in a reduced space. In the algorithm, the number of degrees of freedom is reduced by linearly mapping one degree of freedom to multiple intervals with similar electricity prices. The mapping is iteratively refined using a wavelet-based analysis of the previous solution. We apply the algorithm to the scheduling of a compressed air energy storage. We model the efficiency characteristics of the turbo machinery using artificial neural networks. Using our in-house global solver MAiNGO, the algorithm identifies a feasible near-optimal solution with < 1% deviation in the objective value within < 5% of the computational time compared to a solution considering the full dimensionality.
000877550 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000877550 588__ $$aDataset connected to CrossRef
000877550 7001_ $$0P:(DE-HGF)0$$aSchweidtmann, Artur M.$$b1
000877550 7001_ $$0P:(DE-HGF)0$$aLenz, Philipp H. A.$$b2
000877550 7001_ $$0P:(DE-HGF)0$$aMarkgraf, Hannah M. C.$$b3
000877550 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$eCorresponding author$$ufzj
000877550 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2019.106598$$gVol. 132, p. 106598 -$$p106598 -$$tComputers & chemical engineering$$v132$$x0098-1354$$y2020
000877550 8564_ $$uhttps://juser.fz-juelich.de/record/877550/files/pasc_CACE2020_Wavelet.pdf$$yPublished on 2019-10-18. Available in OpenAccess from 2021-10-18.
000877550 8564_ $$uhttps://juser.fz-juelich.de/record/877550/files/pasc_CACE2020_Wavelet.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-18. Available in OpenAccess from 2021-10-18.
000877550 909CO $$ooai:juser.fz-juelich.de:877550$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877550 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877550 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877550 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877550 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000877550 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000877550 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877550 9141_ $$y2020
000877550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877550 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877550 920__ $$lyes
000877550 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000877550 9801_ $$aFullTexts
000877550 980__ $$ajournal
000877550 980__ $$aVDB
000877550 980__ $$aUNRESTRICTED
000877550 980__ $$aI:(DE-Juel1)IEK-10-20170217
000877550 981__ $$aI:(DE-Juel1)ICE-1-20170217