Hauptseite > Publikationsdatenbank > Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices > print |
001 | 877550 | ||
005 | 20240709082131.0 | ||
024 | 7 | _ | |a 10.1016/j.compchemeng.2019.106598 |2 doi |
024 | 7 | _ | |a 0098-1354 |2 ISSN |
024 | 7 | _ | |a 1873-4375 |2 ISSN |
024 | 7 | _ | |a 2128/25071 |2 Handle |
024 | 7 | _ | |a WOS:000498396100021 |2 WOS |
037 | _ | _ | |a FZJ-2020-02285 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Schäfer, Pascal |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1592317408_28260 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Using nonlinear process models in discrete-time scheduling typically prohibits long planning horizons with fine temporal discretizations. Therefore, we propose an adaptive grid algorithm tailored for scheduling subject to time-variable electricity prices. The scheduling problem is formulated in a reduced space. In the algorithm, the number of degrees of freedom is reduced by linearly mapping one degree of freedom to multiple intervals with similar electricity prices. The mapping is iteratively refined using a wavelet-based analysis of the previous solution. We apply the algorithm to the scheduling of a compressed air energy storage. We model the efficiency characteristics of the turbo machinery using artificial neural networks. Using our in-house global solver MAiNGO, the algorithm identifies a feasible near-optimal solution with < 1% deviation in the objective value within < 5% of the computational time compared to a solution considering the full dimensionality. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lenz, Philipp H. A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Markgraf, Hannah M. C. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.compchemeng.2019.106598 |g Vol. 132, p. 106598 - |0 PERI:(DE-600)1499971-7 |p 106598 - |t Computers & chemical engineering |v 132 |y 2020 |x 0098-1354 |
856 | 4 | _ | |y Published on 2019-10-18. Available in OpenAccess from 2021-10-18. |u https://juser.fz-juelich.de/record/877550/files/pasc_CACE2020_Wavelet.pdf |
856 | 4 | _ | |y Published on 2019-10-18. Available in OpenAccess from 2021-10-18. |x pdfa |u https://juser.fz-juelich.de/record/877550/files/pasc_CACE2020_Wavelet.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877550 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-14 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT CHEM ENG : 2018 |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-14 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-14 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-14 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|