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Nomenclature1

Reduced-space scheduling problem2

Symbol Description
d Continuous degree of freedom
x Intermediate variable
y Binary degree of freedom
Φ Objective function

Wavelet transform3

Symbol Description
λa,b Wavelet coefficient
ψa,b Wavelet basis function

Case study4

Symbol Description Unit
mC Mass processed by compression train [kg]
mE Mass processed by expansion train [kg]
mN Net mass accumulation in cavern [kg]
m Currently stored mass [kg]
p Cavern pressure [Pa]
WC Electricity consumption of compression train [J]
WE Electricity production of expansion train [J]
wC Specific electricity consumption of compression train [J/kg]
wE Specific electricity production of expansion train [J/kg]
yC Binary variable for compression train [-]
yE Binary variable for expansion train [-]
Φ Objective function (= negative savings) [EUR]
ΠC Pressure ratio for compression train [-]
ΠE Pressure ratio for expansion train [-]
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Indices1

Symbol Description
i Set of continuous degrees of freedom
j Set of binary degrees of freedom
k Set of intermediate variables
l Set of inequality constraints
m Set of equality constraints
s Iteration index
t Temporal index for variables
t̂ Index for degrees of freedom in reduced dimensionality
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1 Introduction1

In economies with a high share of electricity generation from intermittent renewable sources, the ex-2

ploitation of temporal price spreads at electricity markets is considered a promising measure to in-3

crease the competitiveness of both energy suppliers and consumers [46]. Consequently, raising these4

potentials through optimized schedules has become a vibrant research field [66]. Process scheduling5

has been addressed in literature using discrete-time [30, 14, 40, 64] and continuous-time formulations6

[50, 53, 24, 25, 41]. Advantages and applications in process systems engineering of both types of time7

representation have been widely reviewed [17, 39, 21]. For scheduling subject to time-variable input data,8

such as electricity prices, only few authors propose continuous-time formulations (e.g., [12, 13, 20]), as9

the input data is in general inherently discrete (e.g., hourly changing electricity prices in day-ahead10

markets). Consequently, the vast majority of literature relies on discrete-time formulations, mostly by11

applying the same discretization as the input data and assigning optimal loads and modes of operation12

to the individual intervals. Therefore, we herein confine to discrete-time formulations. Furthermore, we13

explicitly focus on scheduling subject to time-variable electricity prices.14

Early work from Ierapetritou et al. [26] already addresses discrete-time scheduling problems subject15

to time-variable electricity prices considering an air separation unit as application. The authors consider16

multiple stationary operating modes and formulate the optimal production schedule as a mixed-integer17

linear program (MILP). Later, Karwan and Keblis [27] and Mitra et al. [43, 45] tighten and extend18

these MILP formulations. Exemplary applications of such MILP scheduling formulations include the19

capacity planning for air separation units [44] and the economic assessment of a switchable chlorine20

electrolysis [11]. However, real processes are often not well represented by simplified linear models. Zhang21

et al. [68] therefore propose a framework to approximate nonconvex feasible sets and nonlinear objective22

functions with MILP formulations that can be handled efficiently by state-of-the-art algorithms/solvers.23

This is achieved by approximating the feasible set by a union of polytopes with piecewise linear objective24

function. The approach is referred to as convex region surrogate (CRS) model and has been succesfully25

applied to scheduling of air separation units [67, 70, 69]. However, CRS models for multivariate nonlinear26

behavior typically result in a large number of disjunctions, which complicates the solution of the MILPs.27

This motivates the consideration of nonlinearities directly in the optimization problem.28

Only very few works apply nonlinear process models in scheduling, leading to mixed-integer nonlin-29

ear programs (MINLPs) (e.g., [18]). The use of global solution methods is desired for such problems.30

Moreover, the number of variables and constraints scales linearly with the number of considered inter-31

vals in discrete-time scheduling problems, such that prohibitive problem sizes are easily reached. Global32

solution of MINLP scheduling problems consequently becomes highly challenging for relevant planning33

horizons with fine discretizations.34

Reduction of the problem size can be addressed by clustering methods that represent a time series with35
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a large number of intervals by an aggregated time series consisting of a smaller number of representative1

intervals. Methods for time series aggregation are based on ideas dating back decades and have been2

widely applied in energy systems engineering, cf. [60] and the references therein. Most of them aim3

at including information about time-variable input data into design optimization [2, 31, 3]. There are4

systematic approaches for iterative decisions whether to refine the resolution of the aggregated time5

series, e.g., by monitoring the course of the optimal design variable values (cf., [37]) or the objective6

function value (cf., [48]) over the iterations. However, there are currently no methods to determine7

which parts of the time series require a fine resolution and where a coarser one is appropriate. Moreover,8

a drawback of methods for time series aggregation is that the chronology of time steps is in general9

not preserved, i.e., they cannot capture if the model outcome in one time step depends on previous10

time steps. This is however crucial for process systems, where storage is important to raise economic11

potentials. There are recently proposed aggregation methods that are able to retain the chronology for12

periods of the original time series [5]. Nevertheless, for short-term scheduling subject to time-variable13

electricity prices, approaches are desired that guarantee compliance with the chronology for the entire14

scheduling horizon.15

Therefore, we propose an alternative approach to achieve a low temporal dimensionality in the op-16

timization problem. The first key idea of our algorithm is to linearly map a reduced set of new degrees17

of freedom (DoF) for optimization onto the original DoFs, which represent each time interval of the18

scheduling horizon individually. In particular, we assign the same DoF to multiple time intervals with19

similar electricity prices, which has basically a similar effect as aggregating the time series. However,20

using a linear mapping procedure maintains the chronology of the time series and allows for consideration21

of constraints for all time intervals in contrast to aggregation methods. This enables the modeling of22

storage relations and guarantees feasibility of the solution point if it is inserted into the original problem23

with full temporal dimensionality.24

In the algorithm, we furthermore apply the wavelet-based adaptive grid algorithm from Schlegel et25

al. [56] originally proposed for iteratively refining the control vector parametrization and thus the number26

of DoFs in dynamic optimization problems (cf., [7]). Therein, a wavelet transform of the solution of the27

previous iteration with coarser discretization is conducted. An analysis of the coefficients of the wavelet28

transform is then performed for systematic adjustments of the discretization. This analysis identifies29

both parts of the considered horizon that need a finer discretization and parts where a coarser one30

can be used, thus allowing for systematic introduction of additional and deletion of insignificant DoFs31

from the optimization problem. We apply this grid-adaptation to iteratively refine the assignment of32

DoFs to time intervals. Thereby, our proposed algorithm generates a sequence of feasible points for33

the optimization problem with full temporal dimensionality. Furthermore, the algorithm can guarantee34

nonincreasing objective values between subsequent iterations. By solving the optimization problems with35
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reduced dimensionality to global optimality, the sequence ultimately converges to the globally optimal1

schedule. As the iterative increase in problem sizes involves an increasing computational demand, we2

also adapt heuristic stopping criteria and tuning parameters from Schlegel et al. [56] that balance the3

trade-off between improving the objective function and limiting the computational burden.4

Finally, in order to facilitate the application of the algorithm, we introduce a reduced-space scheduling5

formulation, which allows for optimization only in the space of the DoFs instead of the full-space compris-6

ing all model variables [47], and which has recently been shown advantageous for global optimization of7

process flowsheets [8, 9] as well as optimizations with artificial neural networks (ANNs) embedded [58, 57].8

We highlight that reduced-space formulations of scheduling problems show similarities with sequential9

solution approaches for dynamic optimizations [52, 32]. This can be seen as a vanishing border between10

scheduling formulations that classically rely on quasi-stationary models and formulation of dynamic op-11

timization problems. We emphasize that the presented approach is consequently also relevant for the12

emerging research field of scheduling with dynamic models [4], where several authors have proposed the13

construction of low-dimensional dynamic models to capture the dynamics of scheduling-relevant variables14

[15, 29, 61] and applied them to the operational optimization of process systems [49, 62]. Nevertheless,15

we herein focus on the application of the algorithm to scheduling with quasi-stationary models, as they16

still appear predominant.17

The proposed algorithm is applied to the scheduling of a compressed air energy storage subject to18

time-variable electricity prices. The scheduling problem is considered a suitable case study for assess-19

ing the performance of the algorithm for computationally highly challenging problems, as substantial20

nonconvexities originating from the nonlinear efficiency characteristics of the turbo machines exist, for21

which we use ANNs as powerful surrogate models for operational optimization.22

The remainder of this article is structured as follows: we first present a generic scheduling problem23

with time-variable electricity prices in a reduced-space formulation. Afterwards, the algorithm itself is24

introduced. Furthermore, we discuss its attributes. Then, the case study is presented and the specific25

MINLP scheduling model formulation is introduced. Computations are conducted for different scheduling26

horizons.27

2 Generic reduced-space scheduling problem28

The algorithm introduced in Section 3 targets the solution of the generic scheduling problem (1a)-(1e).29

This corresponds to a reduced-space scheduling formulation. Note that a significant share of all discrete-30

time scheduling problems with time-variable electricity prices that have been considered in literature31

so far can be formulated equivalently. We do not claim that the reduced-space formulation is always32

beneficial. However, it facilitates the application of the grid-adaptation.33
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In (1a)-(1e), the schedule for fulfilling a production target is optimized by minimizing costs. Al-1

ternative objectives might be possible, such as maximizing profitability, and would require only minor2

changes. The objective function Φ (1a) is a sum over single interval cost functions φt for each time in-3

terval t “ 1 . . . T . In most cases, this simply corresponds to the product of the instantaneous electricity4

price and the current electricity consumption. di denote the continuous process inputs (such as mass5

flows, power consumptions, etc.) and yj the binary (e.g., operating modes). The values of the process6

inputs in each time interval t are the DoFs for optimization, referred to as di,t and yj,t and limited by7

respective bounds (1d)-(1e). If the DoFs are specified, the entire schedule can be calculated. Moreover,8

two kinds of constraints are imposed: one that needs to be fulfilled in every interval (1b), e.g., operating9

ranges, and one for the last interval (1c), which allows for consideration of production targets. Other10

types of constraints (e.g., targets at intermediate time points, minimum requirements at final time, etc.)11

are possible as well and could be added in a similar way as (1b)-(1c), but are omitted for readability.12

The (in)equality signs in (1b)-(1c) are chosen to match the case study, however different ones could be13

applied as well. Furthermore, we assume that the function gl,t in (1b) depends on all DoFs up to time14

t, as this is typically the case for real processes. However, the assumption is not necessarily required.15

min
di,t,yj,t

Φ “
T

ÿ

t“1

φtpdi,t, yj,tq (1a)

s.t. 0 ď gl,tpdi,1, . . . , di,t, yj,1, . . . , yj,tq, @l, t (1b)

0 “ hmpdi,1, . . . , di,T , yj,1, . . . , yj,T q, @m (1c)

dli ď di,t ď dui , @i, t (1d)

yj,t P t0, 1u , @j, t (1e)

We herein also allow for further intermediate variables xk,t, that are however not exposed to the16

optimizer and thus not presented as part of the reduced-space optimization problem (1a)-(1e). Instead,17

they are calculated successively in an explicit manner from the DoFs and their initial conditions xk,1.18

xk,t`1 “ fkpxk,t, di,t, yj,tq, @k, tz tT u (2)

We thereby explicitly allow for temporal dependencies to enable the modeling of storage devices.19

Constraints on xk,t (e.g., storage limits) can also be accounted for in the reduced-space formulation20

above by including them into (1b)-(1c).21
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3 Wavelet-based grid-adaptation1

Recall that the proposed algorithm comprises two key features in addition to the reduced-space formu-2

lation (i.e., hiding (2) from the optimizer): (i) the linear mapping of a reduced set of new DoFs for3

optimization onto the original DoFs and (ii) the wavelet-based grid-adaptation from Schlegel et al. [56].4

Both are explained in the following. Furthermore, properties of the algorithm are discussed.5

3.1 Linear mapping of the degrees of freedom6

We represent the original DoFs of the optimization problem di,t and yj,t by new DoFs d̂i,t̂ and ŷj,t̂ with7

reduced dimensionality. Formally, the new DoFs for optimization are mapped to the original DoFs by a8

linear relation using the matrix A P R
TˆT̂ ((3a)-(3b)). The index for the new DoFs t̂ “ 1 . . . T̂ does not9

necessarily have a chronological meaning. In fact, we thereby also aggregate disjoint time intervals. A10

significant reduction of the number of DoFs is achieved by choosing T̂ ! T .11

pdi,1, . . . , di,T qT “ Apd̂i,1, . . . , d̂i,T̂ qT , @i (3a)

pyj,1, . . . , yj,T qT “ Apŷj,1, . . . , ŷj,T̂ qT , @j (3b)

The use of a common matrix for all inputs is not mandatory and only selected to simplify the12

notation. As the algorithm targets the solution of scheduling problems with time-variable electricity13

prices, we consider a mapping that assigns one degree of freedom to multiple intervals of the scheduling14

problem that comprise similar electricity prices. Thus, each row of A has T̂ ´ 1 zero entries and one15

entry equal to one.16

Inserting the right-hand side of (3a)-(3b) into the optimization problem (1a)-(1e), we obtain a reduced-17

space formulation with lower dimensionality.18

min
d̂i,t̂,ŷj,t̂

Φ̂ “
T̂

ÿ

t̂“1

φ̂t̂pd̂i,t̂, ŷj,t̂q (4a)

s.t. 0 ď ĝl,tpd̂i,1, . . . , d̂i,T̂ , ŷj,1, . . . , ŷj,T̂ q, @l, t (4b)

0 “ ĥmpd̂i,1, . . . , d̂i,T̂ , ŷj,1, . . . , ŷj,T̂ q, @m (4c)

dli ď d̂i,t̂ ď dui , @i, t̂ (4d)

ŷj,t̂ P t0, 1u , @j, t̂ (4e)

In comparison to problem (1a)-(1e), there are fewer optimization variables in (4a)-(4e). The objective19

remains a summation over single functions, but now with index t̂, i.e., with fewer summands. The number20
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of constraints (4b) in contrast remains unchanged, i.e., constraints have to hold for every t. Moreover,1

internal calculations of intermediate variables (2) also remain unaffected, such that the system (4a)-(4e)2

still respects the chronology of the horizon. Thus, dependencies between model variables in time steps t3

and t` 1 can still be accounted for, allowing for the consideration of storage relations.4

Directly analyzing the left-hand side of (3a)-(3b) for iterative adaptation of A would typically involve5

the analysis of a strongly fluctuating time series, such that the application of the algorithm from Schlegel6

et al. [56] might show poor performance. Thus, we propose the following decomposition of A introducing7

matrices P and B:8

A “ P
´1

B.

Having electricity prices c “ pc1, . . . , cT qT , the permutation matrix P P R
TˆT is defined in a way that9

Pc furnishes a vector of electricity prices in descending order. As P is constant during the iterations,10

the remaining matrix B P R
TˆT̂ is in fact to be adapted over the iterations. In B, each row also has11

T̂ ´ 1 zero entries and one entry equal to one. However, the rows are arranged in a way that blocks of12

column vectors with all entries equal to one are formed. The blocks are located from top left to bottom13

right. The size of the blocks thus determines how many intervals with similar prices are represented by14

the corresponding DoF. Compared to the multiplication with A (i.e., the left-hand side of (3a)-(3b)),15

the series after multiplication with B will likely show substantially less fluctuations and is thus expected16

more suitable for the wavelet-based grid-adaptation. The entire mapping procedure is illustrated in17

Figure 1 for a small example.18

3.2 Wavelet-based analysis and grid-adaptation19

We apply the algorithm from Schlegel et al. [56] (cf., Figure 2) to iteratively adjust the first mapping20

in Figure 1, i.e., the matrix B. More precisely, this corresponds to deciding how many intervals with21

similar prices should be represented by the same DoFs. Hence, starting in iteration 0 from an initial22

assignment matrix B
0, the algorithm iteratively generates a sequence B

0,B1, . . . ,Bs by solving (4a)-23

(4e). The corresponding solutions d̂s˚

i,t̂
and ŷs˚

j,t̂
are analyzed to determine the adapted assignment matrix24

B
s`1 for the next iteration until a desired stopping criterion is reached. The adaptations of the matrix B25

correspond to adding additional DoFs to the optimization problem (“grid point insertion”) or to deleting26

irrelevant ones (“grid point deletion”).27

The algorithm decides on whether to increase or decrease the number of DoFs by analyzing the28

differences in the solution from the previous iteration, i.e., by analyzing |∆d̂s˚

i,t̂
| “ |d̂s˚

i,t̂
´ d̂s˚

i,t̂´1
|. Easily29

spoken, if |∆d̂s˚

i,t̂
| is small, using individual DoFs d̂s`1

i,t̂
and d̂s`1

i,t̂´1
in the next iteration is insignificant.30

In contrast, if |∆d̂s˚

i,t̂
| is large, it is worth investigating benefits from increasing the number of DoFs to31
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3.3 Properties of the algorithm1

If the deletion of grid points is prohibited, the objective value in iteration s ` 1 is guaranteed to be as2

least as good as the objective value in iteration s. Thus, using ǫd “ 0 gives a nonincreasing sequence3

of objective values for any ǫi. If ǫi “ 1 is additionally chosen (i.e., selecting all possible grid points4

for insertion), the algorithm ultimately results in a one-to-one assignment in (3a)-(3b) with B P R
TˆT .5

Consequently, the solution of (4a)-(4e) then becomes equivalent to the solution (1a)-(1e). If the sub-6

problems in each iteration are solved to global optimality, the sequence of solution points converges to7

the global minimizer of (1a)-(1e) in this case.8

Due to the computational complexity of the original problem, convergence of the optimization prob-9

lems to solve to (1a)-(1e) is in general not desired. A reasonable selection of ǫd and ǫi thus should10

balance between exploration through increasing the number of DoFs for improved objective values and11

maintenance of low dimensionality in the optimization problem to limit the computational demand. Fur-12

thermore, appropriate stopping criteria should be applied. A suitable criterion indicating near-optimal13

solution points furnished by the grid-adaptation is the relative improvement in the objective function14

from one iteration to the next:15

∆Φs “ |Φs´1 ´ Φs|
|Φs| .

If ∆Φs falls below a threshold, the algorithm is terminated. As a reasonable selection for the threshold16

value, we herein apply the relative optimality tolerance optcr for the solution of (4a)-(4e) for this purpose17

as well, i.e., the algorithm is terminated if ∆Φs ă optcr. Moreover, if the insertion step only proposes18

refinements that would lead to a finer resolution than a one-to-one assignment, the algorithm is also19

terminated.20

In each iteration s, inserting the optimal solution d̂s˚

i,t̂
and ŷs˚

j,t̂
into (3a)-(3b) gives a feasible point21

for the optimization problem (1a)-(1e). Note that this point will in general not satisfy any optimality22

conditions. However, as the point is feasible and expected near-optimal if sufficiently many iterations have23

been performed, it represents a suitable initial solution for a local search considering the full temporal24

dimensionality of optimization problem (1a)-(1e). The search does not necessarily need to be performed25

among all optimization variables. For instance, performing the local search only on continuous variables26

that can be handled very efficiently in state-of-the-art local NLP solvers seems to be an appealing27

alternative. We acknowledge that there is no guarantee that the local solver will converge to the actual28

global minimum. However, a feasible point satisfying local optimality conditions and likely further29

improving the objective value can be furnished requiring comparably low additional computational effort.30

Alternatively, the feasible point generated through (3a)-(3b) could be used as initial point for a global31

solution of (1a)-(1e); this would be beneficial for global algorithms whose computational requirements32
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strongly depend on having good initial guesses.1

Various works demonstrate the successful practical application of the grid-adaptation to dynamic2

optimization problems. In particular, authors have shown that the algorithm can identify high-quality3

solutions by using problem specific discretizations that are comparable to those when using very fine4

equidistant discretizations, but require substantially less computational time [56, 51, 22]. In particular,5

authors have also shown that an adequate balance between maintaining a low number of DoFs and6

improving the objective function can be achieved by tuning the parameters and that few adaptation7

steps starting from coarse discretizations commonly suffice for obtaining near-optimal solutions.8

Nevertheless, the performance of the algorithm will certainly depend on the actual problem consid-9

ered. As the algorithm essentially exploits the strong relation between instantaneous electricity prices10

and optimal values of the DoFs in the corresponding intervals, we expect the performance to be best if11

this relation is very distinct.12

4 Case Study13

Storage of electrical energy is currently considered as an important measure to promote the penetration14

of renewable electricity generation from intermittent sources [6]. Among the variety of opportunities,15

compressed air energy storage (CAES) belongs to the few technologies that have been commercialized16

and are readily available at large scale [36]. In a CAES plant (Figure 3), electricity is bought at low17

prices. The energy is used to pressurize and store air in a cavern. In times of high electricity prices, the18

cavern is discharged via turbines that power a generator. The concept relies on large price spreads to19

overcome the efficiency losses of the turbo machinery [34]. An optimal scheduling is thus crucial for the20

economic performance of the plant [35].21

Scheduling of a CAES plant represents a computationally challenging optimization problem, as the ef-22

ficiency characteristics of turbo machinery commonly show highly nonlinear behavior. Moreover, schedul-23

ing of CAES plants involves a strong linking between time intervals, in a sense that the pressure of the24

cavern in interval t and thus also the necessary work for storing additional gas/the released work by25

expanding stored gas depends on the cavern pressure of the previous interval t´ 1.26

4.1 Scheduling model27

In the following, the considered set of equations for modeling a CAES plant with a distinct focus on the28

relations inside the turbo machines is presented to highlight the capabilities of the presented algorithm29

to solve nonlinear scheduling problems involving linking between the intervals.30
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yEt ` yCt ď 1, @t.

Furthermore, we set limits for the mass flows only in case that the operating mode is active. Otherwise1

we force them to be zero2

yEt m
E
min ď mE

t ď yEt m
E
max, @t

yCt m
C
min ď mC

t ď yCt m
C
max, @t.

We thereby use big-M formulations for the disjunctions, although convex hull formulations generally lead3

to tighter relaxations [19]. Moreover, a linear balance is used for modeling the accumulation of stored4

mass within the cavern5

mt`1 “ mt ` pmC
t ´mE

t q

with mt as the stored mass. Assuming air to be an ideal gas, the cavern pressure pt can be calculated6

via7

pt “ mtRT

MV

using R “ 8.314 J
mol¨K

(ideal gas constant), M “ 0.028949 kg
mol

(molar mass of air), T “ 323.15 K8

(constant cavern temperature), and V “ 40, 000 m3 (cavern volume). The cavern pressure is used to9

determine the pressure ratios of the expansion/compression train ΠE
t and ΠC

t . We account for pressure10

losses in the pipes through a constant ∆p “ 50, 000 Pa. pa “ 100, 000 Pa further corresponds to the11

ambient pressure.12

ΠE
t “ pt ´ ∆p

pa

ΠC
t “ pt ` ∆p

pa

Having the respective pressure ratios as well as the processed amount of air, the specific energies13

can be obtained from the efficiency maps of the turbo machines. We use artificial neural networks14

(ANNs) to represent the efficiency correlations. We use one efficiency map for the expansion and one for15

compression train, each at optimized operating points. More precisely, the efficiency maps are obtained16

from individual operational optimizations of the turbine/compressor configuration by optimally setting17

pressure ratios between the single turbo machines that lead to lowest energy consumption/highest energy18
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production for given total flow and pressure ratio. This procedure is explained in detail in our earlier1

work [58]. The ANN functions are denoted by fEANN and fCANN. In both cases, feed-forward ANNs with2

hyperbolic tangent activation functions comprising one hidden layer and 25 neurons are used. Training3

of the ANNs is conducted using the Levenberg-Marquardt algorithm from MATLAB’s Deep Learning4

Toolbox (Mathworks, Inc.).5

wE
t “ fEANNpmE

t ,Π
E
t q

wC
t “ fCANNpmC

t ,Π
C
t q

Furthermore, we also represent the operating bounds of the turbo machines, such as surge limits, via6

ANNs. In total, there are four operating bounds for both the expansion and the compression train. In7

each case, two functions define maximum pressures (left and upper boundaries of the efficiency maps8

represented by functions gEANN,1, g
E
ANN,2, g

C
ANN,1 and g

C
ANN,2) and two functions define minimum pressures9

(right and lower boundaries of the efficiency maps represented by functions gEANN,3, g
E
ANN,4, g

C
ANN,3 and10

gCANN,4). ANN-functions defining the operating bounds comprise one hidden layer with 12 neurons.11

pt ď gEANN,1pmE
t q ` p1 ´ yEt qM

pt ď gEANN,2pmE
t q ` p1 ´ yEt qM

pt ě gEANN,3pmE
t q ´ p1 ´ yEt qM

pt ě gEANN,4pmE
t q ´ p1 ´ yEt qM

pt ď gCANN,1pmC
t q ` p1 ´ yCt qM

pt ď gCANN,2pmC
t q ` p1 ´ yCt qM

pt ě gCANN,3pmC
t q ´ p1 ´ yCt qM

pt ě gCANN,4pmC
t q ´ p1 ´ yCt qM

Choosing a sufficiently large constant M , which needs to be as high as the maximum cavern pressure12

that can be reached, ensures that the equations are always fulfilled in time intervals, where the operating13

mode is not active. This again corresponds to big-M formulations with the aforementioned implications.14

Finally, we prevent an emptying of the cavern over the horizon by demanding:15

0 “
T

ÿ

t“1

pmC
t ´mE

t q.
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4.1.2 Degrees of freedom and reduced-space formulation1

Revisiting the model equations in the previous subsection, one recognizes that if values are given for the2

process inputs (turbine/compressor flow and the operating modes) for all t, all other model equations3

can be evaluated in an explicit manner. The reduced-space scheduling problem for the CAES thus reads4

(cf., (1a)-(1e))5

min
mE

t ,mC
t ,yE

t ,yC
t

Φ “
T

ÿ

t“1

φtpmE
t ,m

C
t , y

E
t , y

C
t q (6a)

s.t. 0 ď gl,tp. . .q, @l, t (6b)

0 “
T

ÿ

t“1

pmC
t ´mE

t q, (6c)

0 ď mE
t ď mE

max, @t (6d)

0 ď mC
t ď mC

max, @t (6e)

yEt , y
C
t P t0, 1u , @t (6f)

with mE
t , m

C
t , y

E
t , y

C
t corresponding to the DoFs for optimization and summarizing all inequality6

constraints in (6b). A trivial solution is selecting all DoFs to be zero (mE
t “ mC

t “ yEt “ yCt “ 0),7

resulting in an initial upper bound Φ0 “ 0.8

For the application of the adaptive grid algorithm, we select the same matrix A
s for all process9

inputs within one iteration. In fact, this means that for T̂ DoFs per process input, there are always10

4T̂ optimization variables. Due to the special structure of the problem, it appears to be appropriate11

to decide on grid point insertion and deletion (i.e., on increasing or decreasing the number of DoFs per12

process input) based on the analysis of the net flow mN
t “ mE

t ´ mC
t . This selection originates from13

the fact that in each interval either mE
t or mC

t is allowed to be nonzero. Furthermore, choosing more14

DoFs to represent the time series for yEt and yCt than for mE
t and mC

t is pointless. Although a reduction15

of the number of binary variables might be computationally highly beneficial, we consciously disregard16

the possibility to represent yEt and yCt by substantially fewer DoFs than mE
t and mC

t , as the refinement17

procedure originally proposed by Schlegel et al. [56] solely focused on continuous optimization problems.18

Refinement strategies explicitly targeting an efficient handling of binary variables by accounting for their19

characteristics (commonly, substantially less frequent fluctuations) is a promising future work.20

4.2 Application of the grid-adaptation21

The reduced-space scheduling problem (6a)-(6f) is implemented in our in-house software for deterministic22

global optimization MAiNGO [10], which utilizes the concept of McCormick relaxations [42, 47, 63].23
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MAiNGO provides very tight relaxations for ANN functions, which enables substantial improvements1

compared to commercial state-of-the-art solvers [58]. We also tested full-space formulations of the process2

model in GAMS (GAMS Development Corp.) and tried a solution using BARON [59]. However, the3

computational performance of the reduced-space formulation applied in MAiNGO was found superior,4

which is in good agreement with previous work [58].5

Default settings are used within MAiNGO for the lower and the upper bounding procedure. Op-6

timization is stopped either if a relative optimality gap of ă1% is reached or if a CPU time limit of7

5 ¨ 105 s is exceeded. The grid-adaptation is always initialized with four equally-distributed DoFs per8

process input, i.e., the same DoFs are used for the 25% of intervals with highest electricity prices, etc.9

The grid-adaptation is either stopped if the relative change in the objective function between subsequent10

iterations is below 1% or if the finest resolution is reached and no further grid points are to be inserted.11

The applied threshold values ǫd “ 0.0001 and ǫi “ 0.7 have been found by trial and error and provide a12

good balance between improving the objective function and maintaining a low number of DoFs.13

All calculations are conducted on an Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz with 192 GB14

RAM. Calculations were performed using a single CPU of the server only and thus did not make use15

of MAiNGO’s parallel computing capabilities. We tested three solvers in the upper bounding procedure16

(SLSQP [33], IPOPT [65], and KNITRO [16]). CPLEX (IBM Corporation) is used as solver in the lower17

bounding.18

4.2.1 Performance of the algorithm for different scheduling horizons19

Figure 4 depicts the progress of the adaptive grid algorithm for varied lengths of the scheduling horizon20

with N “ 4, 5, 6, 7, which corresponds to T “ 16, 32, 64, 128 time intervals. Confining to an hourly21

discretization in accordance with the electricity market, we thus consider scheduling horizons between22

16 h and „5 d. For N “ 4, 5, we also show the results of a straight-forward global search considering23

individual DoFs for each interval of the full time series. As can be seen, a global search considering24

the full temporal dimensionality becomes computationally prohibitive. In fact, no feasible point with25

objective value better than Φ0 can be found within the time limit of 5 ¨105 s for N ě 5. Results depicted26

are produced using SLSQP as solver in the upper bounding. Using KNITRO as solver with mixed-integer27

capabilities gives no improvements. We thus conclude that even for moderately long scheduling horizons,28

the generation of favorable feasible points is not a simple task.29

Moreover, we expect that for N “ 5 the current lower bound after exceeding the time limit still30

substantially underestimates the global minimum. Consequently, a straight-forward application of de-31

terministic global solution algorithms to scheduling problems of comparable complexity will not lead to32

desired results, emphasizing the need for advanced solution algorithms.33

As can be seen from Figure 4, the adaptive grid algorithm reaches one of the stopping criteria for all34

©Schäfer et al. Page 18 of 32



Adaptive-grid Scheduling 15.6.2020

10
0

10
1

10
2

10
3

10
4

10
5

CPU time [s]

-300

-200

-100

0

S
ca

le
d

 o
b

je
ct

iv
e 

[%
]
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(b) 32 time intervals

10
0

10
1

10
2

10
3

10
4

10
5

CPU time [s]

-300

-200

-100

0

S
ca

le
d

 o
b

je
ct

iv
e 

[%
]

(c) 64 time intervals
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(d) 128 time intervals

Wavelet-based grid-adaptation

Full time series: Upper bound

Full time series: Lower bound

Figure 4: Progress of the grid-adaptation and comparison to a global optimization considering individual
DoFs for each interval of the time series. Results are depicted for T “ 16, 32, 64, 128 ((a) - (d)). Objective
function values are relative to the best feasible point furnished by the algorithm (dotted line). Asterisks
depict the outcome of the algorithm after each iteration. The solid lines give current upper bounds
and dashed lines current lower bounds when solving the problem considering individual DoFs for each
interval.

scheduling horizons within at most four iterations. Note that only for N “ 5, the fourth iteration of the1

algorithm also results in an improvement of more than 1%; however, no further iterations are performed2

as a further grid point insertion is only possible in insignificant parts of the time series. The reason for3

this anomaly lies in a very distinct price peak in the underlying time series of electricity prices. Here,4

an exceptionally high electricity price occurs for only one hour of the horizon. As in the last iteration5

of the algorithm, individual DoFs are assigned exclusively to this singular hour, the improvement in the6

objective function is comparably high between the third and the fourth iteration.7

Final solutions depicted in Figure 4 use 12, 14, 16, and 17 DoFs per process input to represent the8

entire time series. We emphasize that for the longest scheduling horizon of 128 hourly intervals, this9

corresponds to a reduction of the dimensionality of the DoFs for optimization by almost 90% compared10

to assigning individual DoFs to each interval of the horizon. In case of N “ 4, i.e., T “ 16, the objective11

value after the last iteration of the grid-adaptation can be compared to the global optimum obtained by12

a deterministic search under consideration of the full temporal dimensionality. The error between the13

objective values is substantially less than 1% and thus lower than the remaining optimality gap of the14

global search. The comparison to the global optimum is not possible for N ě 5, as the global solver15

does not converge within the time limit. However, also in these cases, our results indicate that solution16
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points close to the global optima have been furnished. In particular, the sequences for N “ 6 and N “ 71

seem to converge with the improvement between subsequent iterations consistently decreasing, e.g., for2

N “ 7, the improvement between the zeroth (four DoFs per process input) and the first iteration (eight3

DoFs per process input) is ∆Φ1 “ 72%. Further increasing the number of DoFs to 14 in the second4

iteration gives ∆Φ2 “ 9% and finally ∆Φ3 ă 0.1% using 16 DoFs in the third one. Moreover, comparing5

the absolute values of the objective function for different N allows for a rough plausibility check: If the6

fluctuations show repeating patterns with similar amplitudes, savings when doubling the horizon are7

expected twice as high. As can be seen in Table 1, our results are in a good agreement with this rule8

of thumb. In fact, when comparing the objective for N “ 5, 6 with that for N ´ 1, the improvement9

is larger than a factor two, which can be explained by a larger spread of electricity prices. For N “ 7,10

the factor is slightly lower than two; however, in this case, storage capacities become a relevant factor,11

limiting the achievable savings (cf., Figure 5).12

Table 1: Comparison of savings for different horizon lengths and the fluctuations of the corresponding
electricity price time series.

Objective value Standard deviation of
Horizon Φ [EUR] price time series [EUR/MWh]

N “ 4 (T “ 16) -72.5 22.13
N “ 5 (T “ 32) -156.5 25.14
N “ 6 (T “ 64) -354.3 32.60
N “ 7 (T “ 128) -684.5 32.57

We further tested the two optional a posteriori search strategies (cf., Subsection 3.3) on the original13

problem with full temporal dimensionality for all scheduling horizons. The local search strategies ((i) local14

searches considering all variables using mixed-integer solvers and (ii) local searches considering continuous15

variables only using NLP solvers) both yielded slightly improved solutions within short time. However,16

improvements are considered insignificant (less than 1% and thereby less than the final optimality gap of17

the global solution from the last iteration). Global solution strategies starting from the outcome of the18

adaptive grid algorithm did not result in any further improved feasible points within a CPU time limit of19

50,000 s. We thus assume the feasible points that are obtained after stopping of the grid-adaptation to20

be a close approximation of the global solution of the optimization problem considering the full temporal21

dimensionality.22

Looking at the solution times given in Figure 4 allows for estimating the savings in computational23

times when applying the grid-adaptation. For N “ 4, the algorithm furnishes a feasible point with an24

objective value extremely close to the global minimizer as stated above within less than a CPU time of25

400 s by using 12 DoFs per process input to represent the time series. The computational time for the26

global search considering the full temporal dimensionality, i.e., 16 DoFs per process input, is however27

„8,000 s and thus higher by a factor of „20. In case of N “ 5, the adaptive grid algorithm terminates28
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(a) Iteration 0

0 20 40 60 80 100 120

Time [h]

0

20

40

60

80

100

S
to

ra
g

e 
le

v
el

 [
%

]

0

50

100

150

200

P
ri

ce
 [

E
U

R
/M

W
h

]

(b) Iteration 1
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(c) Iteration 2
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(d) Iteration 3

Figure 5: Operation schedule of the CAES plant after each of the four iterations of the grid-adaptation
((a) - (d)) for a scheduling horizon of T “ 128. Dashed thick black lines depict the storage level (i.e.,
the cavern pressure), solid thin gray lines correspond to the electricity price profile for the case study.
The dotted line depicts the production target.

after a CPU time of less than 3,000 s finally using 14 DoFs per process input to represent the entire1

time series, compared 32 DoFs per process input when considering the full temporal dimensionality.2

The global search on the original problem with full temporal dimensionality is stopped after exceeding3

the CPU time limit of 5 ¨ 105 s with a substantial remaining optimality gap. Time savings enabled by4

the grid-adaptation thus already correspond to a factor of "100, i.e., to multiple orders of magnitude.5

Extrapolating the results presented in Figure 7 and discussed in Subsection 4.2.2 allows for approximating6

solution times when considering the full temporal dimensionality. E.g., for N “ 5, solution times in the7

order of 1 ¨ 107 . . . 1 ¨ 108 s are expected. Solution times for N ě 5 thus appear prohibitive even when8

using multiple cores in parallel.9

In Figure 5, the hourly operation schedule of the CAES plant after each iteration of the grid-10

adaptation is given for a horizon of T “ 128, i.e., N “ 7. Note that this corresponds to a planning11

horizon of more than 5 days, which is a scheduling horizon with relevant length considering the limited12

predictability of future electricity prices. Recap that the depicted storage level is not a DoF of the13

optimization problem. In contrast, it integrates the input and output mass flows and thereby the two14

continuous DoFs (cf., Subsection 4.1). Thus, the slope of the storage level in one interval corresponds15

to the instantaneous value of the DoFs. Besides, a great advantage of depicting the storage level lies in16

the fact that it is highly relevant for the limiting constraints in the operational optimization and thereby17
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Figure 7: CPU time per iteration of the adaptive grid algorithm vs. DoFs for optimization for each of
the process inputs. Note that there are four process inputs mE
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matrices. Symbols depict the varying scheduling horizons (upwards-pointing triangles: 16 h, circles: 32
h, squares: 64 h, downwards-pointing triangles: 128 h).

4.2.2 Scaling of the algorithm1

As computational times represent the main bottleneck for the solution of nonlinear scheduling problems2

with time-variable electricity prices on relevant planning horizons, we briefly discuss the scaling of the3

presented algorithm. Here, one has to differentiate between the consideration of larger time horizons,4

i.e., more intervals, and the increase in the number of DoFs per process input to represent the time5

series. Note that in straight-forward solution approaches, the latter directly follows from the former.6

However, in case of the presented adaptive grid algorithm, the consideration of larger time horizons does7

not necessarily mean a proportional increase of optimization variables. Solely the number of constraints8

that need to be satisfied, i.e., the dimensionality of (6b), scales linearly with the length of the horizon.9

In Figure 7, solution times for each individual iteration are depicted. The plot uses a logarithmic10

scale for the CPU times. If the number of intervals considered remains unchanged, the solution times11

approximately lie on a straight line, corresponding to an exponential scaling of the solution time when12

increasing the number of optimization variables. In fact, introduction of four additional DoFs per process13

input results in an increase of CPU time by a factor ten. This finding is valid for all considered scheduling14

horizons, thus giving parallel lines for the horizons. Importantly, the distance between the lines for N15

and N`1 is approximately constant for all N . This corresponds to a linear relation. More precisely, for a16

fixed number of DoFs representing the time series, consideration of twice as many intervals (N 1 “ N`1),17

leads to a doubled solution time.18

This scaling behavior is considered an important feature of the grid-adaptation, as it allows for the19

consideration of relevant planning horizons of several days to weeks even for complex nonlinear scheduling20

problems if an appropriate assignment of DoFs to time intervals is chosen and thus sufficiently few DoFs21

are exposed to the optimization algorithm.22
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5 Conclusion1

We present an algorithm for the solution of discrete-time nonlinear scheduling problems with time-2

variable electricity prices. The algorithm is designed for a generic class of scheduling problems that are3

formulated in a reduced space. In particular, the algorithm is applicable to problems with linking between4

time intervals due to storage. The key idea of the algorithm is to substitute the original degrees of freedom5

of the optimization problem, which represent each time interval of the scheduling horizon individually,6

by new degrees of freedom with substantially reduced dimensionality. More precisely, one degree of7

freedom is assigned to multiple intervals of the scheduling problem that comprise similar electricity prices8

through a linear mapping. A systematic approach using a wavelet-based analysis iteratively adapts the9

assignment. Although we target the application of this algorithm to complex nonlinear programs, the10

general ideas might also be advantageous for the solution of mixed-integer linear scheduling problems.11

We apply the grid-adaptation to the operational optimization of a compressed air energy storage12

plant. Substantial nonlinearities in the scheduling problem arise from the efficiency characteristics of13

the turbo machines. These are accounted for by using artificial neural networks as surrogate models.14

We show that the algorithm is able to identify feasible schedules that give similar objective values as a15

global search with consideration of the full temporal dimensionality, but requires substantially less time.16

In fact, this enables the consideration of scheduling horizons, which are prohibitively long without the17

grid-adaptation. Moreover, we find that the solution times scale approximately linearly with the horizon18

length when maintaining the same number of degrees of freedom in the optimization problem.19

Important perspectives for future research can be identified. (i) It might be a promising improvement20

to a priori estimate the required number of degrees of freedom and their assignment to the intervals for21

a good initial representation of the time series. (ii) There are process features in literature which are22

not relevant in our case study, such as ramping and transitional constraints (more generally: constraints23

limiting the rate of change of the DoFs between subsequent time intervals). If such constraints are highly24

relevant for the optimal schedule, the performance of the algorithm could be impaired. Consequently,25

in presence of ramping and transitional constraints, tailored adaptation strategies might be beneficial.26

Along the same lines, a special treatment of binary optimization variables is desired that addresses their27

“on/off” behavior. (iii) Besides, there has been work in the field of dynamic optimization concerning28

the detection of the switching structure of the problem [55, 54, 1]. Adapting these methods to schedul-29

ing as well is a promising perspective. (iv) Finally, it is worth exploring different applications for the30

grid-adaptation. These will include scheduling problems subject to other time-variable input data, e.g.,31

subject to a time-variable environmental impact (e.g., [28]). A further possible application lies in two-32

stage stochastic programs, where the same recourse action could be applied to multiple similar scenarios.33

34
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A Further details on the grid-adaptation algorithm1

A.1 Fast wavelet transform2

The specific case of the wavelet transform for piecewise-constant signals (i.e., signals in the Haar-Basis3

that naturally occur in scheduling with quasi-stationary models) is presented below.4

Let the argument of the wavelet transform (5) be denoted by pd̃s˚

i,1, . . . , d̃
s˚

i,T qT , i.e.5

pd̃s˚

i,1, . . . , d̃
s˚

i,T qT “ B
s ¨ pd̂s˚

i,1, . . . , d̂
s˚

i,T̂
qT .

Note that d̃s˚

i,1 does not denote the optimal value of di in the first interval, but rather in the interval with6

the highest electricity price. This vector is now rearranged and multiplied with the matrix H.7

¨

˚

˝

vs1,1 . . . vs
1,T

2

vs2,1 . . . vs
2,T

2

˛

‹

‚
“ H ¨

¨

˚

˝

d̃s˚

i,1 . . . d̃s˚

i,T´1

d̃s˚

i,2 . . . d̃s˚

i,T

˛

‹

‚

H “ 1?
2

¨

˚

˝

1 1

1 ´1

˛

‹

‚

The first row pvs1,1, . . . , vs1,T
2

qT thus contains (scaled) pairwise averages of the solution vector and the8

second row pvs2,1, . . . , vs2,T
2

qT (scaled) pairwise differences, which are the wavelet coefficients λsN´1,b.9

pvs2,1, . . . , vs2,T
2

qT “ pλsN´1,1, . . . , λ
s
N´1,T

2

q

This procedure is repeated N -times setting pvs1,1, . . . , vs1,T
2

qT as the new pd̃s˚

i,1, . . . , d̃
s˚

i,T qT and recursively10

calculating the λsa,b’s. In the N ’th iteration, the remaining pairwise average then equals λs
´1,0, which11

corresponds to the average of the entire time series.12

A.2 Grid point deletion and insertion algorithms13

Let λ
s denote a vector containing all wavelet coefficients λsa,b. Then, a suitable criterion for deletion14

that uses a threshold 0 ď ed ď 1 reads:15

|λsa,b| ď ed }λs}2 @a, b.

If a wavelet coefficient λsa,b is selected for deletion, the corresponding basis function ψa,b will be discarded16

when deriving the matrix B
s`1 for the next iteration (cf., Appendix A.3).17

For insertion, only the boundary coefficients are considered. The coefficient λ̃sa,b is called a boundary18

coefficient if λ̃sa`1,2b “ 0 _ λ̃sa`1,2b`1 “ 0 holds. Let the boundary coefficients further be ordered, such19
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that |λ̃sa,b,j | ě |λ̃sa,b,j`1| and let there be vectors λ̃
s
containing all boundary coefficients and λ̃

s

j containing1

the j highest boundary coefficients. Then, we apply the following criterion for insertion:2

›

›

›
λ̃
s

j

›

›

›

2
ě ei

›

›

›
λ̃
s
›

›

›

2
@j.

If a wavelet coefficient λsa,b is selected for insertion, the two basis function ψa`1,2b and ψa`1,2b`1 will be3

included when deriving the matrix B
s`1 for the next iteration (cf., Appendix A.3).4

Selecting the same coefficient for both deletion and insertion during one iteration is excluded. Fur-5

thermore, we only allow for deletion of boundary coefficients.6

A.3 Illustration of the construction of the mapping matrix7

The matrix B
s`1 is constructed in a recursive manner, starting from B

s`1 “ 1 and a “ 0 and iterating8

from b “ 0 to b “ 2a ´ 1. A wavelet basis function ψa,b that shall be considered for Bs`1 adds both a9

row and a column to the matrix. A neglected basis function ψa,b in contrast only adds a new row. For10

instance, if ψ0,0 shall be used, the matrix is adjusted to:11

B
s`1 “

¨

˚

˝

1 0

0 1

˛

‹

‚

and we set a “ 1. Now, we assume that - in accordance with the example in Section 3 - ψ1,0 shall be12

used, whereas ψ1,1 shall be unused. The first adjustment then results in:13

B
s`1 “

¨

˚

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‹

‚

.

The second step gives:14

B
s`1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The procedure is repeated N times. Thereby, a matrix B
s`1 is finally obtained with 2N rows and as15

many columns as wavelet basis functions that shall be considered in iteration s` 1.16
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