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A B S T R A C T

Background: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are biologi-

cally heterogeneous and often co-occur. As within-diagnosis heterogeneity and overlapping diagnoses are

challenging for researchers and clinicians, identifying biologically homogenous subgroups, independent of di-

agnosis, is an urgent need.

Methods: MRI data from 148 adult males with developmental disorders (99 primary ASD, mean age = 31.7 ±

8.0, 49 primary ADHD; mean age = 31.7 ± 9.6) and 105 neurotypical controls (NTC; mean age = 30.6 ±

6.8) were analyzed. We extracted mean cortical thickness (CT) and surface area (SA) values using a functional

atlas. Then, we conducted HeterogeneitY through DiscRiminant Analysis (HYDRA) to transdiagnostically cluster

and classify individuals. Differences in diagnostic likelihood and clinical symptoms between subtypes were

tested. Sensitivity analyses tested the stability of the number of subtypes and their membership by excluding 13

participants diagnosed with both ASD and ADHD and by using a different atlas.

Results: In relation to both CT and SA, HYDRA identified two subtypes. The likelihood of ASD or ADHD was not

significantly different from the chance of belonging to any of these two subtypes. Clinical characteristics did not

differ between subtypes in either CT or SA based analyses. The high consistency in membership was replicated

when utilizing a different atlas or excluding people with dual diagnoses in CT (dice coefficients > 0.94) and in

SA (> 0.88).

Conclusion: Although the brain-derived subtypes do not match diagnostic groups, individuals with develop-

mental disorders were successfully and stably subtyped using either CT or SA.

1. Introduction

Autism spectrum disorder (ASD) is a developmental disorder char-

acterized by two core symptoms: social communication impairment and

restricted interest and repetitive behavior (American Psychiatric

Association, 2013). The prevalence of ASD is estimated to be more than

1% (Xu et al., 2018); symptoms are also observed in those without the

full diagnosis (Hoekstra et al., 2007). Attention-deficit/hyperactivity

disorder (ADHD) is another developmental disorder characterized by

age-inappropriate inattentive and/or hyperactive-impulsive symptoms

(American Psychiatric Association, 2013). Similarly, ADHD symptoms

are observed also in people without the full diagnosis (Lubke et al.,
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2009). Biological findings, such as genetic factors contributing to the

symptoms and traits, familial aggregation, and endophenotype, trans-

cend the diagnostic boundary in both ASD and ADHD (Chen et al.,

2017; Clarke et al., 2016; Gau and Shang, 2010; Sandin et al., 2014;

Stergiakouli et al., 2015; Yamagata et al., 2018). Additionally, ASD and

ADHD symptoms also transcend the boundary between these two dis-

orders. Indeed, one-third of individuals with ASD meet ADHD diagnosis

and vice versa and even more show traits of the other disorder

(Grzadzinski et al., 2011; Grzadzinski et al., 2016; Reiersen et al.,

2008). Co-occurrence happens not only in core but also in non-core

symptoms, such as hyper- and hypo-sensitivity (Little et al., 2018; Ohta

et al., 2019; Pan et al., 2009). Besides the overlap in these clinical

symptoms, ASD and ADHD show familial co-aggregation (Ghirardi

et al., 2018; Jokiranta-Olkoniemi et al., 2016), suggesting their shared

genetic etiology (Stergiakouli et al., 2017). Although results vary,

neuroimaging studies demonstrated some similarities in atypical cor-

tical structure, white matter, and function (Ameis et al., 2016; Brieber

et al., 2007; Chantiluke et al., 2014; Christakou et al., 2013). On top of

such shared atypicality, neural bases of ASD symptoms in individuals

with ADHD are similar to those in individuals with ASD (Baribeau et al.,

2019). These overlapping features contribute, at least in part, to the

within-diagnosis heterogeneity and inconsistency in findings from stu-

dies contrasting diagnostic groups (Insel, 2014). Identifying highly

biologically homogeneous subtypes, independent of the clinical diag-

nosis, is an urgent need in the research field of developmental dis-

orders.

In this context, previous functional MRI studies focused on features

that ensure phenotypic homogeneity in ASD, in ADHD, and in both

(Kernbach et al., 2018; Lin et al., 2018; Tang et al., 2019). However,

findings are mixed. While a study including individuals with ADHD

highly homogeneous in terms of demographic characteristics showed

high homogeneity in neural characteristics within the diagnostic

boundary (Lin et al., 2018), another study with a larger sample size

showed neural heterogeneity within ASD diagnosis (Tang et al., 2019).

Of note, a study with both ASD and ADHD detected brain transdiag-

nostic features that map clinical characteristics independent of diag-

noses (Kernbach et al., 2018). Two studies attempted to subtype clinical

participants to address the unstable numbers of subtypes (Kernbach

et al., 2018; Lin et al., 2018). One possible reason for instability is too

many degrees of feature utilized to subtype. Indeed, two studies relying

on structural MRI, which has a smaller number of degrees of feature

than fMRI, used different clustering methods aimed to subtype in-

dividuals with ASD reported the optimal number of subtypes as three

(Chen et al., 2019; Hong et al., 2018). Another possible reason is that

previous clustering methods relied on the similarity of fMRI signal

among subjects and can be vulnerable to cofounding signal related to

non-pathophysiological characteristics. Thus, they might have reflected

normal inter-subject variability, rather than highlighting the hetero-

geneity.

To address these issues from previous studies, we recruited adult

males with ASD and those with ADHD as well as adult male neuroty-

pical controls (NTC) and applied Heterogeneity through Discriminative

Analysis (HYDRA) to structural MRI data (Varol et al., 2017). HYDRA is

a hybrid method where clustering and classification are conducted si-

multaneously. A standard classification approach (e.g., support vector

machine) attempts to identify the pathophysiological features spanning

the clinical group from the NTC group by drawing a decision boundary

between the groups without considering the heterogeneity within the

clinical group. In contrast, HYDRA attempts to find subtypes within the

clinical group while maximizing margin boundaries between the clin-

ical and NTC groups. This unique ability allows us to identify biologi-

cally homogeneous subtypes, each of which preserve different aspects

of pathophysiological features of developmental disorders, i.e., differ-

ences to typically developing controls, rather than picking up features

which have a non-pathophysiological origin, such as head motion, bed

vibration, or instability of magnetic field strength. As they reflect

different aspects of the cortex, we utilized two different cortical para-

meters: cortical thickness (CT) and surface area (SA) with high tes-

t–retest reliability (Iscan et al., 2015).

2. Materials and methods

2.1. Participants

MRI data of 148 adult males with a developmental disorder(s) (99

primary ASD diagnosis and 49 primary ADHD diagnosis) as well as 105

NTC participants were selected from a larger sample. Thirteen in-

dividuals had both diagnoses. Because of the nature of the current study

aimed to transdiagnostically subtype people, we gave priority to people

with a single diagnosis to include. Thus, the number of people with dual

diagnoses is smaller than the estimated. The diagnostic process of the

current study is detailed elsewhere (Ohta et al., 2019). Briefly, a mul-

tidisciplinary team, including psychiatrists and psychologists, reviewed

developmental history and made clinical diagnoses according to the

DSM-IV-TR criteria. A diagnosis of ASD was further supported by the

Autism Diagnostic Observation Schedule-1 or -2 (ADOS) (n = 74)

(Gotham et al., 2009; Gotham et al., 2007). Five individuals did not

satisfy the diagnostic criteria of ASD on the ADOS (four had a total

score of 6; one had a total score of 7 but the communication score was

1). In these cases, at least two psychiatrists carefully reviewed the

charts and confirmed the clinical diagnosis. ASD and ADHD traits were

evaluated using the Autism Spectrum Quotient and Conners’ Adult

ADHD Rating Scales, respectively (Baron-Cohen et al., 2001; Conners

et al., 1999). The intelligence quotient (IQ) of participants in clinical

groups was estimated using either the Wechsler Adult Intelligence

Scale-Third Edition (WAIS-III) or WAIS-Revised (WAIS-R) (Wechsler,

1997; Wechsler and De Lemos, 1981). Seventy-two participants were

taking medication at the time of scan (36 ASD and 36 ADHD). NTC

participants were recruited via an advertisement or through an ac-

quaintance. A lack of any psychiatric diagnosis in the NTC group was

confirmed using the Mini-International Neuropsychiatric Interview

(Sheehan et al., 1998). Full-scale IQ in the NTC group was estimated

using a Japanese version of the National Adult Reading Test (Matsuoka

et al., 2006). Exclusion criteria for all the participants included taking

antipsychotics, any history of head trauma, any serious medical con-

dition, substance abuse, or IQ below 80.

2.2. MRI data acquisition

All MRI data were acquired using a 3.0 T MRI scanner (MAGNETON

Verio, Siemens Medical Systems, Erlangen, Germany) with a 12-

channel head coil. T1-weighted images were acquired with an MPRAGE

sequence (TR: 2.3 s, TE: 2.98 ms, flip angle: 9°, FOV: 256 mm, matrix

size: 256 × 256, slice thickness: 1 mm, 240 sagittal slices, voxel size:

1 × 1 × 1 mm).

2.3. Structural MRI data preprocessing

Structural MRI data was processed using FreeSurfer version 6.0.1

(Dale et al., 1999; Fischl et al., 1999). This algorithm performs a series

of preprocessing steps, including spatial normalization, bias field cor-

rection, intensity normalization, skull-stripping, segmentation, and re-

construction of surface mesh. We computed the aforementioned two

parameters: CT and SA. For each parameter, we, then, extracted the

mean values using the Schäfer's 400 cortical atlas that parcellated

cortex into functionally homogeneous parcels using intrinsic functional

connectivity (Schaefer et al., 2018). To test the robustness of findings

against atlas choice, we also computed the mean values using Des-

trieux's cortical atlas (Destrieux et al., 2010). At the same time, utilizing

a different atlas challenges the stability of the findings against the de-

gree of features as the Destrieux's cortical atlas consists of 148 regions

of interest (ROIs) while the Schaefer's 400 cortical atlas consists of 400

T. Itahashi, et al.



ROIs.

2.4. Number of subtypes

We used a recently developed semi-supervised learning method,

referred to as HYDRA, the code of which is publicly available (https://

github.com/evarol/HYDRA) (Varol et al., 2017). Using the cortical

parameter (i.e., CT or SA) of 400 ROIs while including age and hand-

edness as nuisance covariates, we defined neuroanatomical subtypes,

regardless of clinical diagnoses. This method is based on the classifi-

cation framework, in which it compares participants with develop-

mental disorders and NTCs to identify k clusters within the group of

participants with developmental disorders in a data-driven manner. We

set the hyperparameters, such as the number of iterations, that of

consensus clustering steps, and regularization parameter, based on a

previous study (Varol et al., 2017). Consistent with previous studies

with this method, we set multiple clustering solutions from two to 10

clusters, to obtain a range of possible solutions. The adjusted rand index

(ARI) was computed using 10-fold cross-validation to assess the stabi-

lity of each clustering solution. In this study, we considered a solution

with the highest ARI value as the optimal number of clusters (Steinley,

2004). Once the optimal number of clusters was determined, a per-

mutation test with 5000 iterations was then performed to examine its

statistical significance. At each iteration, labels were shuffled. HYDRA

was then applied, and the ARI for the shuffled data was computed to

construct the null distribution. The actual ARI was then compared to

the null distribution to examine its statistical significance. The

threshold for statistical significance was set to P < 0.05. To further

confirm the stability of clustering solutions, we computed two addi-

tional metrics, the Hamming distance and the Rand index, representing

dissimilarity and similarity, respectively, between different clustering

solutions. Thus, lower Hamming distance and higher Rand index in-

dicate more stable clustering solutions.

2.5. Statistical analyses

2.5.1. Clinical characteristics of each subtype

2.5.1.1. Two-group comparison. Once subtypes were identified, two-

tailed, two-sample tests were performed, to investigate differences in

clinical characteristics, such as age, handedness, IQ, AQ, and CAARS,

among subtypes as well as differences between subtype and the NTC

group. The threshold of statistical significance was set at P < 0.05

after false discovery rate (FDR) correction. Chi-square tests examined

whether the likelihood of the diagnosis of ASD or ADHD is statistically

significantly different from the chance.

2.5.1.2. Three-group comparison. One-way analysis of variance

(ANOVA) was performed to examine the effects of primary diagnoses

on demographic characteristics. The threshold of statistical significance

was set at P < 0.05 for demographic characteristics, while those for

cortical parameters were set at P < 0.05 after FDR correction.

2.6. Cortical characteristics of subtypes

We conducted two-tailed, two-sample tests to examine differences

in cortical parameters among subtypes as well as differences between

subtype and the NTC group. The threshold of statistical significance was

set at P < 0.05 after false discovery rate (FDR) correction. The ana-

lyses were conducted for CT and SA, separately.

2.7. A convergence of area with differences

Once statistically significant differences were observed between

subtypes and the NTC group, conjunction analyses were performed to

identify brain regions consistently exhibiting alterations across condi-

tions. To increase the interpretability of results, we also calculate the

percentage of altered brain regions in each of seven resting-state net-

works (Yeo et al., 2011).

2.8. Membership consistency

To evaluate membership consistency across four HYDRA (2 at-

lases × 2 inclusion criteria), we calculate dice coefficients while con-

sidering the subtypes obtained using the functional atlas including in-

dividuals with dual diagnoses as a reference. These analyses were

performed in CT and SA, separately.

2.9. Conventional comparison between diagnostic groups

2.9.1. Demographic characteristics

Age, handedness, IQ, AQ, and CAARS scores were compared across

three diagnostic groups (ASD, ADHD, and NTC) using ANOVA.

Statistical threshold was set at P < 0.05 with FDR correction. Turkey’s

post-hoc analyses were conducted when ANOVA showed statistical

significance.

2.10. Cortical parameters

In HYDRA, we adopted a whole-brain approach instead of focusing

on ROI. To examine regional differences in cortical parameters between

diagnostic groups, we conducted a conventional ANOVA. We utilized

the functional atlas and set statistical significance at P < 0.05 after

FDR correction. All analyses were conducted in Matlab.

3. Results

3.1. Number of subtypes

With 10-fold cross-validation, HYDRA using CT identified that two

subtypes (i.e., k = 2) showed the highest ARI (ARI = 0.85 ± 0.02

[mean ± standard deviation]) and the highest statistical significance

(p < 0.001), indicating that the individuals with developmental dis-

orders were clustered into two subtypes (CT-subtype1 and CT-sub-

type2). The number of clusters remained two when we conducted

HYDRA with SA (ARI = 0.75 ± 0.02, p < 0.001) (SA-subtype1 and

SA-subtype2). The optimal numbers of subtypes were unchanged even

when excluding 13 people with a dual diagnosis and/or using the

anatomical atlas (Supplementary Fig. 1). Furthermore, the optimal

numbers of subtypes was corroborated by the supplementary explora-

tion of two additional metrics, i.e., the Hamming distance (CT:

0.12 ± 0.03, SA: 0.08 ± 0.03) or Rand index (CT: 0.89 ± 0.02, SA:

0.92 ± 0.03; Supplementary Fig. 2) to assess cluster stability.

3.2. Clinical characteristics of each subtype

Forty-nine individuals with ASD and 25 people with ADHD were

assigned to CT-subtype1, while CT-subtype2 included 50 individuals

with ASD and 24 individuals with ADHD (Supplementary Table 1). Chi-

square test showed that the likelihood of a diagnosis of ASD or ADHD

did not statistically significantly different from the chance. There was

no significant difference in clinical symptoms between these two sub-

types. Similarly, the statistical differences in the diagnosis likelihood or

clinical symptoms severity were not observed even when excluding

individuals with dual diagnoses and/or using the anatomical atlas

(Supplementary Table 1). The results with SA were substantially similar

to CT (Supplementary Table 2).

3.3. Cortical characteristics of subtypes

3.3.1. CT

The independent t-tests showed that compared with NTC in-

dividuals who were assigned to CT-subtype1 had high CT values in

T. Itahashi, et al.



diffuse brain regions (Fig. 1A 1st row). This pattern did not change in

the sensitivity analysis excluding people with dual diagnoses (Fig. 1A

2nd row), as well as utilizing the anatomical atlas to extract CT values

(Fig. 1A 3rd and 4th rows).

3.3.2. SA

The analysis with SA showed relatively localized differences be-

tween subtypes and NTC. The SA-subtype1 showed a large area of SA

difference in the medial region while less was observed in the lateral

region with the largest difference in the primary motor and sensory

areas (Fig. 2A 1st row). SA-subtype2 showed even less area of SA dif-

ference in the medial part. On the other hand, the posterior insula

showed a large SA value difference between SA-subtype2 and NTC

(Fig. 2B 1st row). This pattern did not change with other sub-analyses

(Fig. 2A.B 2nd-4th rows). SA-subtype1 and SA-subtype2 showed diffuse

areas with differences in SA values (Fig. 2C).

3.4. A convergence of area with differences

CT-subtypes exhibited diffuse albeit an inverse pattern of alterations

when compared to the NTC group. Both subtypes exhibited alterations

mainly in the dorsal attention, default mode, fronto-parietal, and ven-

tral attention networks (Fig. 3A). On the other hand, SA-subtypes ex-

hibited relatively localized alterations. SA-subtype1 exhibited right-

dominant alterations mainly in the limbic network, while SA-subtype2

showed alterations in the somatomotor and limbic networks (Fig. 3B).

3.5. Membership consistency

3.5.1. CT

Compared with the primary CT results (HYDRA using the functional

atlas including those with dual diagnoses), the HYDRA using the

functional atlas excluding those with dual diagnoses showed the dice

coefficient of 0.96. On the other hand, HYDRA using the anatomical

atlas showed high consistency with the primary CT results with (0.94)

and without (0.95) people with dual diagnoses.

3.5.2. SA

Compared with the primary SA results, the functional atlas analysis

excluding people with dual diagnoses (0.99) and the anatomical atlas

analyses with (0.90) and without (0.88) individuals with dual diagnoses

revealed high consistency in membership.

3.6. Conventional comparison between diagnostic groups

3.6.1. Demographic characteristics

There were no statistically significant differences in age, handed-

ness, or IQ across three diagnostic groups (ASD, ADHD, and NTC) (see

Supplementary Table 3). With a few exceptions in subscales, AQ scores

were higher in individuals with ASD compared with individuals with

ADHD, whose AQ scores were higher than TD. Likewise, CAARS scores

were generally higher in individuals with ADHD compared with people

with ASD, and individuals with ASD had higher CAARS scores com-

pared with NTC.

3.6.2. Cortical parameters

ANOVA showed that there were no statistically significant group

Fig. 1. Results of cortical thickness subtyping. The difference in cortical thickness (CT) between neurotypical controls (NTC) and CT-subtype1 is shown (A). The

difference was diffusely distributed with little exception, such as the primary vision area, dorsal anterior cingulate cortex. Compared with the NTC, CT-subtype2 also

showed diffusely low CT values with the largest difference in the dorsolateral prefrontal cortex. The area with the significand difference in CT values between CT-

subtype1 and CT-subtype2 covers almost the entire brain. The threshold of statistical significance was set at P < 0.05 after FDR correction.

T. Itahashi, et al.



Fig. 2. Results of surface area subtyping. The difference in surface area (SA) between neurotypical controls (NTC) and SA-subtype1 is shown (A). The similar pattern

was observed when we utilized the functional atlas with (the first raw) or without individuals with dual diagnoses (the second row) and when we adopted the

anatomical atlas (the third and fourth rows). Sub-panel B shows the results of comparison between NTC against SA-subtype2, while subpanel C shows the difference

in SA values between SA-subtype1 and SA-subtype2. The threshold of statistical significance was set at P < 0.05 after FDR correction.

Fig. 3. Convergence of area across subtypes. Although we defined the results of HYDRA using the functional atlas with the whole participants, we conducted other

three analyses utilizing the anatomical atlas (2 atlases) and with/without people with dual diagnoses (2 inclusion criteria for individuals). The subpanels (A) show the

convergence of the results across the subtypes (left panel) and the percentage of area affected in each resting state network (right panel). We performed the same

analyses adopted SA. The convergence of the area affected across subtypes (2 atlases × 2 participants inclusion criteria) was shown in the subpanel (B).

T. Itahashi, et al.



differences in CT or SA across diagnostic groups (Fig. 4).

4. Discussion

Using a novel approach, we aimed to transdiagnostically subtype,

based on structural MRI features, individuals with developmental dis-

orders to reach high homogeneity in cortical characteristics. As we

expected, the number of subtypes was stable in both CT and SA.

Further, the membership assignment was robust against the atlas

(functional vs. anatomical) and exclusion of individuals with dual di-

agnoses (ASD + ADHD). In addition, the biologically homogeneous

subtypes did not match clinical diagnoses. However, in contrast to our

expectation, biologically homogeneous subtypes did not show any

phenotypic homogeneity.

The current study showed the same number of subtypes as the di-

agnoses (ASD and ADHD). Further, the analyses showed the stability of

the membership against differences in atlas and participants. In general,

the larger number of features resulted in overfitting and the greater

number of subtypes, while a relatively smaller number of features ex-

hibited stability in the clustering results. Given that structural MRI data

has fewer features due to the lack of temporal resolution compared with

fMRI, utilizing structural MRI may explain the stability of the results.

Besides, the robustness against the number of features in structural data

was shown by demonstrating the same number of subtypes using two

different atlases (148 vs. 400 ROIs). At the same time, although a

number of studies have reported atypical brain structure in individuals

with ASD and those with ADHD (Anagnostou and Taylor, 2011; Vaidya,

2012), using structural data might have led to the negative findings that

subtypes do not match clinical diagnoses. There are some potential

reasons for the negative findings. First, a number of hypotheses on

atypical functional connectivity were launched as potential pathophy-

siology in developmental disorder. For example, dysconnectivity within

default mode network, atypical large-scale brain network, and im-

balance between networks were considered in individuals with ADHD

(Castellanos and Proal, 2012; Konrad and Eickhoff, 2010; Qian et al.,

2019). In terms of ASD, atypical connectivity is reported even more

often than in ADHD. For instance, a long-distance hypo- and short-

distance hyper-connectivity hypothesis is still one of the compelling

pathophysiology (Kana et al., 2014). Further, a number of fMRI studies

reported atypical network parameters in ASD (e.g. (Wilkes and Lewis,

2018)). Second, in addition to functional connectivity, atypical struc-

tural connectivity is often reported in both ASD and ADHD (Uddin

et al., 2017). However, as the cortical parameters did not address

structural nor functional connectivity, they may not be the best way to

examine pathophysiology of developmental disorders. It should be

noted that the current findings cannot be generalized to fMRI nor dif-

fusion tensor imaging. Future research with the multimodal data is

expected to address this concern.

Although subtypes showed a diffuse difference, convergence ana-

lyses showed that brain regions in the ventral attention, fronto-parietal,

and default mode networks were most affected in the CT subtyping.

Albeit different modalities, the current findings were, at least in part,

consistent with the findings of prior studies that attempted to subtype

people with developmental disorders with a data-driven approach.

Concretely, they demonstrated that brain-derived subtypes were char-

acterized by functional connectivity involving default mode network in

both transdiagnostic (Kernbach et al., 2018) and within diagnostic

approaches (Tang et al., 2019). Intriguingly, Subtype1 of both CT and

SA showed atypical values in the medial prefrontal cortex where prior

studies contrasting individuals with ASD and NTC consistently showed

atypicality with different modalities (Aoki et al., 2012; Carlisi et al.,

2017). Given that meta-analyses of studies contrasting people with

ADHD against NTC also showed atypicality in the brain region (Aoki

et al., 2013; Norman et al., 2016), these results might have represented

either the categorical effect of the diagnosis or the subclinical traits of

the other disorder. A future study that disentangles the effects of both

traits and diagnoses is expected.

There are some more possible reasons for the current findings

showing that biologically homogeneous subtypes do not show homo-

geneity in phenotype, which is not consistent with one prior study that

showed significant performance to classify ASD from ADHD using

structural MRI data (Lim et al., 2013). First, although we deem that our

Fig. 4. Sanky diagram across the diagnoses and subtypes. Cortical thickness (CT) The current study enrolled 99 individuals with autism spectrum disorder (ASD) and

49 individuals with attention-deficit/hyperactivity disorder (ADHD). Fifty-two individuals with ASD and 23 individuals with ADHD were assigned to the CT-

subtype1, while 47 individuals with ASD and 26 individuals with ADHD were assigned to CT-subtype2, when we run the analysis using CT values extracted from the

functional atlas (the left column). Further, we conducted the analyses excluding people with dual diagnoses and utilizing an anatomical atlas instead of the functional

atlas. Across these four analyses, 45 individuals with ASD and 18 individuals with ADHD were consistently assigned to the subtype1, while 40 people with ASD and

20 people with ADHD were consistently assigned to the subtype2. Surface area (SA) In the SA analysis using a functional atlas, 49 individuals with ASD and 20

individuals with ADHD were assigned to SA-subtype1, while 50 individuals with ASD and 29 individuals with ADHD were assigned to SA-subtype2. Across the four

analyses, 40 individuals with ASD and 16 people with ADHD were consistently assigned to the subtype1. On the other hand, 39 individuals with ASD and 23

individuals with ADHD were consistently assigned to the subtype2.
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data collected, evaluated, and diagnosed in one-site was not influenced

by multiple confounding factors, such as a difference in a scanner, scan

parameters, and ethnicity, the sample size is relatively small compared

with open data sharing (Consortium, 2012; Di Martino et al., 2014b).

Further, even though all the participants experienced both diagnostic

evaluation and MRI scan, not all of them finished a psychological

evaluation, such as CAARS an AQ. Thus, the statistical power to detect

phenotypical differences became even smaller, which may contribute to

the lack of difference in clinical measures. Second, to reduce bias, we

adopted the whole-brain approach, which may underestimate the lo-

calized difference between diagnoses (Bethlehem et al., 2018; Uddin

et al., 2017). Clustering analysis might have shown better performance

if we focused on only a part of the brain where the atypical structure

was frequently reported for ASD or ADHD (Samea et al., 2019;

Yamagata et al., 2019). However, it should be noted that the conven-

tional comparison between diagnostic groups in the current study did

not show any difference in CT or SA, which made it unreasonable to

focus on a part of the brain in the current participants. Third, although

different trajectory patterns are expected for ASD and ADHD especially

during childhood and adolescence (Di Martino et al., 2014a; Rommelse

et al., 2017; Shaw et al., 2007; Wallace et al., 2010), the current study

included only adults. Namely, the current study might categorize

people with different developmental trajectories into the same group.

Indeed, many studies with ASD and ADHD, including the prior study

with statistically significant diagnosis prediction performance (Lim

et al., 2013), enrolled children or adolescents (Ameis et al., 2016; Aoki

et al., 2017). Fourth, because of practical reasons, some of the parti-

cipants were not medication naïve. Although there was no significant

difference in the likelihood of being under medication between two

subtypes in any condition, the current findings may be biased by the

medication (Nakao et al., 2011). However, it was not possible to run the

analyses after excluding people under medicated, as the number of

individuals with ADHD without medication was only 13.

Finally, the current findings may be interpreted that the clinical

diagnoses do not match biological homogeneity. Atypical findings

shared by ASD and ADHD were reported not only structural MRI but

also other MRI modalities (Ameis et al., 2016; Bethlehem et al., 2017;

Di Martino et al., 2013). Accumulation of evidence that showed over-

lapping abnormality across diagnoses calls for a next step: from con-

trasting clinical diagnostic groups to classification with biologically

high homogeneity (Insel et al., 2010).

In conclusion, we classified people with developmental disorders

based on either CT or SA. The likelihood of ASD or ADHD differed from

chance in neither CT or SA based analyses. The current results suggest

that transdiagnostic subtypes with high homogeneity in the cortical

parameter do not match diagnostic groups. On the other hand, we de-

monstrated the stability of memberships and number of subtypes while

clustering people with developmental disorders, indicating the feasi-

bility of subtyping with high biological homogeneity. The results call

for a paradigm shift from examining the biological difference between

the diagnostic group to define maximally homogeneous transdiagnostic

subtypes from both phenotypical and biological perspectives.
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