| Home > Publications database > Challenges in RNA Regulation in Huntington's Disease: Insights from Computational Studies > print |
| 001 | 877574 | ||
| 005 | 20240625095111.0 | ||
| 024 | 7 | _ | |a 10.1002/ijch.202000021 |2 doi |
| 024 | 7 | _ | |a 0021-2148 |2 ISSN |
| 024 | 7 | _ | |a 1869-5868 |2 ISSN |
| 024 | 7 | _ | |a 2128/25473 |2 Handle |
| 024 | 7 | _ | |a WOS:000540305000001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02299 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Palomino, Oscar |0 P:(DE-Juel1)174273 |b 0 |u fzj |
| 245 | _ | _ | |a Challenges in RNA Regulation in Huntington's Disease: Insights from Computational Studies |
| 260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600958218_28180 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Novel therapeutic approaches are being developed to tackle neurodegenerative diseases, due to the lack of efficiency of the known druggable targets. For Huntington's disease, a promising approach is the regulation of the RNA product. This target would allow for a selective and effective inhibition of the toxic effects exerted by the final nucleic product and the coded protein. In this review, the current state of the art of RNA regulation is discussed, with a brief but insightful view on novel plausible targets. After this, an emphasis on successful computational and experimental approaches tailored in modeling and regulating RNA aberrant behavior are extensively presented. Finally, the application and limitations of current computational methods are discussed, and possible avenues for improvement are outlined. |
| 536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Margreiter, Michael A. |0 P:(DE-Juel1)165176 |b 1 |u fzj |
| 700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 2 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1002/ijch.202000021 |0 PERI:(DE-600)2066481-3 |n 7 |p 681-693 |t Israel journal of chemistry |v 60 |y 2020 |x 0021-2148 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877574/files/ijch.202000021-1.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877574/files/ijch.202000021-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:877574 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174273 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165176 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145921 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-26 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ISR J CHEM : 2018 |d 2020-02-26 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|