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Abstract: Novel therapeutic approaches are being developed  but insightful view on novel plausible targets. After this, an
to tackle neurodegenerative diseases, due to the lack of emphasis on successful computational and experimental
efficiency of the known druggable targets. For Huntington’s  approaches tailored in modeling and regulating RNA
disease, a promising approach is the regulation of the RNA  aberrant behavior are extensively presented. Finally, the
product. This target would allow for a selective and effective  application and limitations of current computational meth-
inhibition of the toxic effects exerted by the final nucleic ods are discussed, and possible avenues for improvement
product and the coded protein. In this review, the current are outlined.

state of the art of RNA regulation is discussed, with a brief
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1. Introduction toxicity indirectly by being translated into toxic proteins.!'”
This is the case in HD, where RNA toxic effects coexist with

Huntington’s disease (HD) was first recognized as a distinct ~ the ones at the protein level, thus rendering them more

disease in 1872.1" A century later, the identification of a  challenging to assess and to understand.

marker on chromosome 3 led to the subsequent elucidation of Before we delve into the many ways RNA contributes to

an unstable CAG trinucleotide expansion located in exon-1 of  progressive neurodegenerative illnesses, we give a brief over-

the huntingtin gene (HTT) as the single cause of the disease.”?  view of RNAs and focus on those typically implicated in HD.

These mutant mRNA transcripts are then translated into a

prolonged glutamine tract (polyQ) in the mutant huntingtin

protein (HTT). In turn, the polyQ tract is responsible for an

increased protein aggregation propensity of mutant HTT,

which can interconvert its monomeric, oligomeric, and fibrillar

forms in vitro and in vivo." [a] O. Palomino-Hernandez, M. A. Margreiter, Jun.-
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2.1 The Versatile Functional Roles of RNA

The human transcriptome consists of coding messenger RNA
(mRNA) and multiple classes of non-coding RNAs (ncRNA),
including ribosomal, transfer and a myriad of other different
types.!""! While about 90 % of the human genome is transcribed
to RNA, only approximately 1.2% is protein-coding and thus
suggests that ncRNA has functions in the regulation of
physiological processes in all cell types.'”

Transcription of mRNA occurs initially as pre-mRNA
(Figure 1). Mature mRNA, ready for translation, is formed by
splicing pre-mRNA and hereby removing intronic
sequences.' Alternative splicing patterns result in different
mature mRNA originating from the same pre-mRNA. To
export mature mRNA from the nucleus into the cytoplasm, the
ribonucleoprotein particle (mRNP) is formed. In the cyto-
plasm, mRNP associates with the ribosomal machinery and
facilitates together with the transfer RNA (tRNA) the trans-
lation into the corresponding protein. During transcription,
processing, transport, and eventual degradation, mRNA is
handled not only by a host of RNA binding proteins but also
by several ncRNAs.

Besides defective mRNA, mutations in ribosomal RNA
(rRNA) and tRNA play roles in mammalian brain develop-
ment, neurological syndromes, and neurodegeneration,!'!
which highlights the importance of RNA in biological
processes.

2.2 MicroRNA Dysregulation in HD

MicroRNAs (miRNAs) are a class of small ncRNA (typically
20-30 nucleotides long) and have received renewed interest
recently in the context of aging and neurodegeneration.””” They
regulate gene expression post-transcriptionally, e.g. reducing
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fluctuations in protein expression''” and are crucial for neuro-
nal function and disease."® For a description in depth of
biogenesis of miRNAs, the reader is referred to other
works.H720

HD appears to affect both miRNA biogenesis and
expression, since: 1. Reduced levels of ribonucleases Drosha
and Dicer were noted in mouse models of HD.?" 2. Post-
mortem cortex samples of HD patients showed impairment of
specific miRNAs, such as upregulation of miR-29a and miR-
330 and downregulation of miR-132, affecting the RNA-
induced silencing complex (RISC) activity.”*"} Some works
indicate that mutant HTT is also involved in the regulation of
RNA processes.*"

All these aspects can be further affected by the presence of
oxidative stress in HD,”™ which is tightly intertwined with
miRNA machinery and can further exacerbate disease
progression.*%”)

2.3 mRNA CAG Expansion as a Primary Driver in HD

Several evidences demonstrate that the RNA toxicity in HD is
triggered by expanded CAG repeats in mRNA and not by
other trinucleotides repeats encoding also for glutamine (i.e.
CAA). Experiments in Drosophila showed that CAG repeats
interrupted with CAA clearly manifest less pronounced toxic
effects.”™ A similar result was found in human neuronal
cells.”* Moreover, while both CAG and CAA encode for
glutamine, the secondary RNA structures linked to each of
them differ. Whereas expanded CAG repeats produce a
hairpin-like structure, CAA or CAG stretches interrupted with
CAA do not fold into a hairpin.! Moreover, CAG hairpin
structures were shown to bind to proteins in a length-depend-
ent manner,”? therefore contributing to HD pathogenicity.
Indeed a feature of HD is the presence of nuclear RNA
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Figure 1. Scheme for the Huntingtin protein pathway from the mutant DNA. Red boxes show successful approaches towards regulating RNA,

and the corresponding RNA target.

inclusions (nuclear foci) loaded with several proteins having
affinity for the CAG mRNA hairpin.”" The number of foci per
nucleus correlates with CAG repeat expansion.”*! Presumably,
RNA repeat inclusions are trapped in the nucleus as a
consequence of RNA overloading with proteins. This, in turn,
decreases the amount of available RNA-binding proteins while
increasing the likelihood of alterations in splicing and
expression of other mRNA. In this way, the expanded CAG
repeats have effects on the subcellular localization of the
mutant transcript, as well as in the binding dynamics of
specific proteins.

2.4 RNA Binding Proteins Show Aberrant Interactions with
Mutant HTT mRNA

Several evidences demonstrate that the RNA toxicity in HD is
triggered by expanded CAG repeats in mRNA and not by
other trinucleotides repeats encoding also for glutamine (i.e.
CAA). Experiments in Drosophila showed that CAG repeats
interrupted with CAA clearly manifest less pronounced toxic
effects.™ A similar result was found in human neuronal
cells.”** Moreover, while both CAG and CAA encode for
glutamine, the secondary RNA structures linked to each of
them differ. Whereas expanded CAG repeats produce a
hairpin-like structure, CAA tracts or CAG stretches interrupted
with CAA do not fold into a hairpin.?! Moreover, CAG
hairpin structures were shown to bind to proteins in a length-
dependent manner,” therefore contributing to HD pathogenic-
ity.

In HTT mRNA with multiple CAG repeats, the formation
of the hairpin-like structure leads to abnormal protein
interactions, impeding their normal functions. Researchers
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probed the mutant H7T RNA interactome using mass

spectrometry and found that dysregulated splicing is pivotal

for RNA-induced neurotoxicity in HD. Accordingly, they
found that the majority of proteins captured by mutant H7TT

RNA are part of the spliceosome pathway."*

In this section, we discuss a few key RNA-protein
interactions relevant to HD recently described in the literature.
1. MIDI, when acting as an E3 ubiquitin ligase, catalyzes the

degradation of target proteins such as PP2A, and also

allows the activity of mTOR, a PP2A-opposing kinase.

Thus, mTOR enhances the activity of S6K, a kinase

translational regulator. In this way, the activation of MID1

is linked to an increase of translation.” It has been
described that in HD, the complex MID1 binds to HTT
mRNA in a length-dependent manner.>!

2. Nuclear RNA foci co-localizing with muscleblind-like
splicing regulator 1 (MBNL1) were found in fibroblasts of
patients with HD and SCA3.F” Furthermore, alternative
splicing defects of MBNLI1 target genes were detected in
HD fibroblasts and other human cell lines expressing
expanded CAG repeats,®” suggesting a role for MBNL1
sequestration and alternative splicing defects in polyQ
diseases.

3. Serine/arginine-rich splicing factor 6 (SRSF6/SRp55) bind-
ing to the CAG repeats is suggested to lead to SRSF6 loss
of function and subsequent splicing defects in specific
targets, although this mechanism has not been yet
completely clarified.?**”

4. Nucleolin, a protein of the nucleolus in control of rRNA
transcription, shows impaired activity in HD, which in turn
triggers apoptosis via the p53 pathway.*”’ It was shown by
Tsoi etal.**¥ that CAG-repeat RNA induces nucleolar
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stress, and is able to bind and sequester the nucleolar

protein nucleolin, thus disturbing ribosome homeostasis.

The examples above illustrate that CAG mRNA modifies
in a significant way several biological pathways. Thus,
approaches towards blocking these aberrant interactions can be
pursued as therapeutic strategies towards restoring normal
protein function.

In the past years, two main strategies were followed to
reach this aim: either targeting directly the CAG mRNA to
hamper its aberrant interactions; or inhibiting RNA binding
proteins by directly targeting their RNA binding motifs. In the
subsequent pages, we will discuss advances and achievements
following both strategies.

3. The CAG Hairpin: Insights into Structure,
Stability, and Dynamics

Although the complete structural characterization of the HTT
mRNA remains elusive, various RNA structural motifs have
been identified for this macromolecule. Studies have consis-
tently demonstrated that H77 mRNA transcripts containing
CAG repeats can assume a stable secondary structure and fold
into duplex helices and hairpins,**** and that interruptions in
the normal HTT gene destabilize the smaller hairpin
structure,™ suggesting a relevant role for the RNA structure
towards inducing a toxic effect.

Within a normal CAG repeat number, in the H77 mRNA
structure, a nearby CCG polymorphic trinucleotide repeat pairs
with the polyCAG section, forming contiguous and small
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bulges with an A—C mismatch in a hairpin. However, for
mutant HTT mRNA, the CAG region interacts both with the
polyCCG section, as well as with itself, forming a secondary
bulge. The number of repeats is linked to the evolution from
the bulge into a proper secondary hairpin, the latter thus being
the one associated with the toxicity of RNA in HD.

Notably, sections of the H7T mRNA covering duplex
helices have been experimentally obtained, and the isolated
sections have been analyzed via NMR and X-ray crystallog-
raphy (Table 1).

The first crystallized structure by Kilisek and coworkers
in 2010 described the purine-purine mismatch due to the A—A
interaction for the sequence r(—GG(CAG),CC—),, with weak
hydrogen-bonding interaction between the two nucleobases.
Pure electrostatic interactions were suggested as the main
responsible for the affinity of RNA binding proteins towards
RNA, such as MBNLI1. Later studies”™ also highlighted that
the A—A mismatch widens the major grove, changing from a
pure A-type RNA to a hybrid between A- and B-type RNA
(with a C1’-C1’ distance from complementary riboses of
around 10.3 A for C—G contacts, but 11.3 for A-A
contacts).”™” This widening was suggested to increase the
accessibility of binding proteins or small molecules."

Tawani and Kumar also analyzed the latter sequence via
NMR and restrained molecular dynamics (MD) studies.’”
Unlike the previous report of Yildirim et al.,”" the internal
CAG A-—A pairs displayed the anti-anti conformation, but the
external CAG A—A pairs displayed the anti-syn conformation
(Figure 2B).

Later, Pan et al.”*! suggested that spurious conformations
could occur in the external CAG A—A pairs because they were
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Figure 2. The CAG motif from experimental structures. The colors encode Cytidine (orange), Adenine (yellow) and Guanosine (cyan). The CAG
can be found as a triplet (A, PDB ID: 5VH7),* a single motif (B, PDB ID: 2MS5),"¥ or single motif co-crystallized with Myricetin (C, PDB ID:
5X11) are shown. The main conformations for the A—A mismatch are also highlighted (B, PDB ID: 4/50).""
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Table 1. RNA structures covering CAG motifs or repeats.

PDB IDF! Description!! Related entries Year
6QISH Synthetic macrocycles binding to 2 CAG repeats!! 6QIV, 6QIT, 6QIR, 6QIQ 2019
5X11e Flavonoids binding to a single CAG motif® - 2018
5VH7# Double helical RNA with three CAG repeats!” - 2017
4YN6PI Double helical RNA with three CAG repeats!” - 2015
2MsS5P% Double helical RNA with CAG motif®! - 2014
4)50P" Double helical RNA with three CAG repeats!®! - 2013
3NJ6P* Double helical RNA with two CAG repeats 3NJ7 2010

[a] X-ray solved structure [b] NMR solved structure.

flanked by CC or GG nucleotides, which were shown to be the
least stable of the 10 dinucleotide steps.” Because these steps
were never present in a genuine (CAG),, its presence could
bias the conformation of adjacent A—A pairs.

It was found that anti-anti conformations, followed by anti-
syn conformations, were energetically preferred, by a very
small energetic difference (~1 kcal/mol), which could explain
all the previous findings. Transition rates of the A—A
conformations were also found to be frequent. They also
suggested that anti-anti interactions are indeed connected with
a wider major groove, and a substantial decrease of the
inclination angle, while anti-syn interactions favors the canon-
ical A—RNA form."

Chen and coworkers™ published independently a study
with NMR and restrained MD, which indicated that one- and
zero-hydrogen bond states are the most frequent structures
observed in the CAG A—A interactions, and that the A—A and
U—U pairs induced distortions to A-form RNA of their helices,
therefore corroborating the previous results (Figure 2A).

4. Small Molecules Binding to CAG Hairpins:
Experiments and Computations

In this section, computational and experimental approaches
regarding CAG-small molecule interactions will be described.
In this respect, molecular simulation has revealed itself as an
increasingly powerful tool to predict RNA/ligands adducts
structures.®** In particular, all-atom molecular dynamics
(MD) simulations reproduce rather accurately the structure,
(sub-) microsecond conformational fluctuations and energetics
of RNA oligos alone™ and in complex with ligands.[*"¢"

4.1 Probing the Druggability of CAG Triplet

Kumar and coworkers®? probed small molecules binding to
the CAG-motif, specifically at the AA mismatch, with a
combination of virtual screening and chemical similarity
searching, based on known nucleic acid binders. A small
molecule,4-guanidinophenyl-4-guanidinobenzoate  (hereafter

D6), was found to inhibit the CAG-MBNLI1 complex in vivo,
with D6 binding to the CAG hairpin with high affinity.

In its 2013 study, Yildirim et al.’"! also suggested that the
anti-syn conformation is quite flexible, and showed a plausible
binding pocket near AA base pairs, thus reinforcing the
viability of a binding pocket in the CAG motif.

The first structure confirming experimentally the interac-
tion between the CAG motif and a small molecule was
obtained by Khan and coworkers,**! showing the interaction of
r(—CCG(CAG)CGG—), with Myricetin using NMR spectro-
scopy and restrained MD (Figure 2C). The structure shows the
flavonoid located in the A—A mismatch region, binding as an
intercalator. As a result, one of the adenines is forced towards
the solvent. Further n-n stacking and hydrogen bond inter-
actions stabilize the bound pose.

Studies by Mukherjee et al.*”! showed the binding of cyclic
bis-naphthyridines to r(—G(CAG),C—), by biophysical and X-
ray studies. Interestingly, the results showed a proportion of
two ligands per CAG triplet, where the ligands are located
inside the RNA helix and mimic nucleobases. The ligands are
located in the A—A mismatch, as in the flavonoid example, but
in this case the immediate guanosine and cytosine are flipped
out, widening and kinking the helix.

Overall, the two crystallized complexes are posed in the
A—A mismatch but inducing quite different binding conforma-
tions. These results suggest a large plasticity of the CAG
hairpin, which in turn can be used as an advantage when
designing new small molecule binders towards CAG-motifs.

4.2 Docking Compounds into CAG Triplet Pockets

The analysis of the atomic details of CAG RNA-ligand
interactions was greatly advanced by the availability of high-
resolution structures of CAG RNA-ligand complexes dis-
cussed above. However, the experimental structure determi-
nation for RNA and its complexes is challenging and currently
cannot be accomplished in a high-throughput manner. There-
fore, the development and the implementation of computer
software for modeling RNA-ligand complexes is becoming a
key technology in this field.

Based on the results obtained by Myricetin, Khan and
coworkers'® performed a chemical similarity search, in order
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to find bioactive compounds towards the CAG motif. After
identifying the top candidates, docking studies suggested the
respective binding poses and the docking binding strength.
Further testing analyzed the activity of these compounds
towards alleviating the polyQ-mediated pathogenesis in HD
cellular models and cells derived from HD patients.

In another study,'" a pyridocoumarin family of derivatives
was also tested against the CAG motif. Docking studies were
also used to model the putative binding mode, and further ITC
and fluorescence studies were performed.

Taken together, when modeling the interaction between a
small molecule and RNA, docking should be taken as a
complimentary procedure or as an educated guess, due to the
lack of proper force field parameterization (vide infia).

4.3 Molecular Dynamics Simulations and Free Energy
Calculations for CAG Repeats Binding Ligands

Bochicchio and coworkers® used computational tools towards
predicting the binding pose and affinity of D6 (vide supra)
towards a CAG-repeat oligo r(—GG(CAG),CC—),. The free
energy surface (FES) was calculated with MD by well-
tempered metadynamics'® as a function of three collective
variables: distance between the centers of mass of the RNA
and D6 (dCM), the number of intermolecular hydrogen bonds
(nHB), and the number of intermolecular hydrophobic contacts
(nHC).

Although the starting pose was obtained with a docking
procedure, the authors noticed that the initial pose changed
significantly, indicating that the docked pose was far from the
real minimum. The obtained in silico model suggested a non-
intercalating binding mode for D6, with salt bridges between
the guanidine tails of D6 and the phosphate backbone, and
parallel (B ring) and T- shaped (o ring) m-stacking interactions
with two adenines of the CAG repeats.

Based on this information, Matthes et al.’”” identified a set
of CAG-repeat binder candidates by in silico methods. One of
those, Furamidine, decreases the protein level of HTT in an
HD cell line model, demonstrating for the first time the
activity of an RNA binder against mutant HTT protein in
living cells. Free energy calculations were also performed on
furamidine-CAG interaction, which agreed with experimental
results. Moreover, furamidine reduces MID1 binding, as well
as the binding of other RNA binding proteins, to HTT mRNA
in vitro."! A comparison of the two binding poses is shown in
Figure 3.

Up to now, the affinity of ligands binding to RNA CAG
repeats has been measured for oligos of nonpathogenic
length.*%! Knowledge of the binding poses of these ligands
may help design new molecules, which eventually bind to
CAG repeats with pathogenic length.

Isr. J. Chem. 2020, 60, 681—-693
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Figure 3. 2D free energy minima from metadynamics calculations for
the compound D6 (A), and Furamidine (B).*"!

5. Modulating Protein-RNA Interactions

Coding and non-coding RNA are handled and processed by
several RNA-binding proteins (RBPs), which often feature
evolutionarily conserved RNA binding domains (RBDs), e.g.
RNA recognition motifs (RRMs).®! A recently compiled
evolutionary-oriented database of RRMs (RRMdb) was put
forward by Nowacka etal.l! Also, high throughput RNA
interactome capture (RIC) experiments performed by Hentze
et al. have significantly expanded our knowledge of existing
RBPs."™ Interestingly, they found that many proteins detected
in screens for RBPs lack a structured Pfam domain, while
detected RBDs were enriched in intrinsically disordered
regions (IDRs). This suggests that many RNA-protein inter-
actions in RBPs occur via non-structured proteins or
regions.""

5.1 In Silico Approaches to Detect RNA Binding Proteins

Encouragingly, experimental methods have been augmented
with computational approaches to reliably predict RBPs. Such
algorithms can be classified as either sequence-, or template-
based. The former primarily depend on evolutionary informa-
tion and physiochemical similarity, e.g. RBPPred,”” whereas
template-based methods also incorporate structural informa-
tion of RBPs, e.g. focusing on electrostatic
complementarity.’” In this regard, support vector machine
models (SVM) were successfully used in both mentioned
examples.

SVMs were trained using large-scale mass spectrometry
data, exploiting the strong tendency of RBPs to interact with
each other in an algorithm known as SONAR (Support vector
machine Obtained from Neighborhood Associated RBPs) and
showed good predictive ability.” SPOT-Seq-RNA represents
an alternative template-based technique that predicts protein-
RNA complex structures and their associated binding affinities

www.ijc.wiley-vch.de 686
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using a knowledge-based energy function, DRNA, derived
from known protein-RNA complexes./>®

Apart from RBPs, there is considerable interest in the
computational development of algorithms that map the RNA-
interacting surface of proteins to predict the RNA binding
residues that facilitate protein-RNA interactions.”” Miao and
Westhof reported a large scale assessment of 19 web servers
and 3 stand-alone programs on 41 datasets including more
than 5000 proteins derived from 3D structures of protein-
nucleic acid complexes.”” An updated overview is presented
by Wan et al.*

5.2 Predicting RNA-protein Complexes

Experimental RBP prediction in combination with computa-
tional approaches will further our understanding of mutant
HTT synthesis, regulation, modification, and degradation. In
turn, these insights can guide the rational design of agents that
hamper the correct interaction of mutant H7T RNA with HD-
relevant RBPs, thus representing an intriguing therapeutic
strategy.

In this respect, the development of RNA-protein docking
algorithms has been hampered by many obstacles. Although
initially, researchers just extended algorithms for protein-
protein docking to protein- nucleic acids complexes, the high
flexibility, often associated with RNA molecules, rendered
searching-algorithms using only static RNA structures ques-
tionable at best. Additionally, while small molecule protein
docking programs benefited from the ever growing amount of
structural protein data, the number of experimentally eluci-
dated RNA-protein complexes still lags behind."” Several
programs have been developed to mitigate this situation (see
footnote").

Due to the growth of high-throughput experimental
technologies, like Chip-Chip and Chip-Seq, a lot of RNA-
protein interactions have been revealed, which enables data-
driven inference of RNA-protein associations.”"! Various
machine learning methods have been employed for the
prediction of RBP-RNA interactions. In this regard, methods
based on SVM such as BindN/BindN +,°*%! the PiRaNhA
web server,’"! or PSSMs-SVMs " have been developed. Other
algorithms rely on decision trees, e.g. NAPS,” Naive Bayes
classifiers, e.g., RNABindR®” or random forests, e.g.
PRBR.™

Notable recent advancements include DisoRDPbind, a
method to predict intrinsically disordered protein interactions
with RNAP®? and long short-term memory (LSTM) neural
networks approaches for generative models to construct
single-stranded nucleic acids which target proteins with high
affinity.!'™"
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6. Challenges and Opportunities of RNA
Modeling

To date, only short segments of the pathogenic RNA have
been obtained by structural studies, which leaves important
questions regarding the behaviour of the toxic RNA in more
than four repeats, or the interaction of this with other relevant
binding proteins. In this way, computational approaches in the
form of molecular dynamics or molecular docking have been
used for several years in many applications to successfully
model the RNA structure and dynamics.

In the next lines, some of the current options for RNA
modeling are discussed, along with current limitations and
challenges.

6.1 RNA-small Molecules Docking Approaches

After the development of the first scoring function specific for
RNA-ligand complexes, by Morley et al.l'® for their propri-
etary high-throughput docking program RiboDock, several
novel methodologies tailored for ligand-RNA docking were
proposed.

Among these, we can find: (i) Knowledge-based scoring
functions for evaluating RNA-ligand complexes like
DrugScoreRNA,'" or LigandRNA,"'”! where both methods
use the analysis of RNA-ligand contact distances for evaluat-
ing the stability of the complexes. (ii) Grid-based scoring
functions, like the one used in DOCK®6,”® or MORDOR, %!
that implement the nonbonded terms of the AMBER and other
molecular mechanics force field.

6.2 Atomistic Force Fields

Atomistic molecular dynamics (MD) simulation is a powerful
tool for characterizing, at atomistic level, the conformational
changes undergone by proteins. The application of such tools
to RNA structures, however, has proven more challenging,
mostly due to the fact that the physical models (force fields)
available for MD simulations of RNA molecules are consid-
ered substantially less accurate in many aspects than those
currently available for proteins.!%’)

The stability of nucleic acids depends on a delicate balance
of electrostatic and Van der Waals forces, which has not been
properly treated in current force fields. Current problems that
have been commonly mentioned'** %! are the following:

— torsional parameters on the RNA backbone and glycosidic
bonds.

"Currently, popular programs and web servers include RosettaDock
server,  3D-Garden,®”  HADDOCK/®¥  HEX  server,®
SwarmDock,™ ZDOCK server,* ATTRACT,*” pyDOCKSAXS,"**!
InterEvDOCK,®” and HDOCK "
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— overstabilization of nucleobase stacking by electrostatic and
van der Waals (vdW) interactions.

— underestimation of base-pairing strength, which can lead to
a destabilization of the proper native state.

— excessive stabilization of the unfolded single-stranded RNA
ensemble by intramolecular base-phosphate and sugar-
phosphate interactions

— conformational sampling of the 2-hydroxyl group on the
sugar.

— charged species are not properly handled, such as phosphate
groups, polyvalent ions, etc.

The AMBER force field"''% is currently the most widely
used force field for MD simulations of RNA systems. Initial
efforts to improve the accuracy of the AMBER RNA force
field have aimed largely at improving the description of
canonical double-helical RNA structure, by refining backbone
and glycosidic torsion parameters on the basis of quantum
mechanical (QM) calculations!'"""™"*1 or experimental
data."' Also, van der Waals parameters were optimized to
avoid overstabilization of nucleobase stacking and the under-
estimation of base-pairing strength.""” " This improved the
correct modeling of RNA tetraloops, but still did not optimize
the accuracy of other RNA systems, like single strand RNA.

Recently, the D. E. Shaw’s group further modified the
electrostatic, vdW, and torsional parameters of the AMBER
ff14 RNA force field"'” by using a combination of ab initio
and empirical methods. The new RNA force field showed a
more accurate reproduction of the energetics of nucleobase
stacking, base pairing, and key torsional conformers for
extended and structured RNA systems, including short and
long single strand RNAs, RNA duplexes, tetraloops, and
riboswitches.!'*

Kuhrova et al. suggested a different approach, by
selectively fine-tuning H-bonds. The gHBfix potential intro-
duced highlights that conventional reparameterization of
dihedral potentials or non-bonded terms can lead to major
undesired side effects, and that the addition of these extra
terms improves the force field performance while avoiding
introduction of major new imbalances.

Force fields usually consist of several empirical energy
terms, including short-range bonded interactions and non-
bonded interactions such as dispersion and electrostatics. In
particular, non-polarizable force fields use fixed point charges
to represent electrostatic interactions. The main limitation of
said force fields is the absence of polarization, i.e., the
response of the charge distribution to the environment. This is
particularly relevant when dealing with small chemicals
interacting with highly charged biomolecules, like RNA. Also,
atom-centered point charge models are very different from the
realistic charge distributions, which are usually smooth and
anisotropic. Moreover, these models cannot reproduce charge
penetration effects that occur when atomic electron clouds

106]

overlap.'"?'?1 Such effects are critical for determining the
equilibrium  geometry and energy of  molecular
complexes.['124
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With respect to the previous shortcomings, some strategies
have been followed: (i) Charge anisotropy can be reproduced
by the adoption of higher-order multipolar electrostatics
models or the addition of off-center charge sites."”'*"! In this
regard, atomic multipoles truncated at the quadrupole term
have been shown to model phenomena such as c-holes, lone
pairs, and n-bonding. (if) Charge penetration can be modeled
as a softening of the electrostatic interaction at short ranges,
usually with the aid of empirically determined damping
functions.'” Charge penetration models can be combined
with the above anisotropic electrostatic model, by placing
charge densities on bonds or lone pairs,'* or by using
damping functions for atomic multipoles.!'*!

Advances in incorporating electron polarization in RNA
simulations are represented by the polarizable Drude force
field for RNA!"® (an extension of the Drude-2017 force
field),"*” or the AMOEBA force field for nucleic acids.!*" Tt
is worth mentioning that albeit the description of the
biomolecular system often increases, the computational
demand for the computation also rises. In this respect, both
Drude and AMOEBA have their own OpenMM version which
enables GPU computing!**"*¥ and AMOEBA also has its
Tinker-HP version for parallel computing.['**!

Overall, atomistic force fields are suitable for modeling
short RNA-paired sequences, RNA-small molecule interac-
tions, and RNA protein interactions.

6.3 Coarse-grained Force Fields

Coarse-grained force fields have gained attention as potential
functions that can sample conformational spaces of larger
molecules in a reduced computational time, at the cost of a
less defined atomic description. In these models, more than an
atom is encoded into a bead (pseudo-atom), which thus
reduces the total number of particles in the system.

These potentials are able to study biologically interesting
processes such as the folding of RNA structures, as in the
TAR hairpin,'* which usually develop over very long time
scales, where normal atomistic force fields would require
prohibitive amounts of computational power.

Several force fields exist, which can go from very coarse
definitions, using 1 (NAST)!"*" or 3% pseudo-atoms per
nucleotide, to more defined models, ranging from 5 to 7
pseudo-atoms (RACER,™™® SimRNA,™” HiRE-RNA,!!
MARTINI') per nucleotide. In general, the more detailed
CG models agree that higher resolution in the backbone or in
the nucleobases improves the overall behaviour of the
simulations.

However, one of the major issues regarding coarse-grained
force fields in RNA is the lack of directionality on key
molecular interactions such as hydrogen bonds, or the lack of
an explicit description of non-canonical base pairs, which are
critical for RNA structures.!'*]
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7. Current Therapeutic Approaches and
Perspectives

Here we give a brief overview of the many therapeutics which
are currently approved or under clinical trial for HD, as well
as their biological rationale.!'**'*!

7.1 Small Molecule Approaches

Some small molecules targeting excitotoxicity have shown
efficacy in humans, such as Tetrabenazine, Deutetrabenazine
and Memantine.!'"*" Another strategy is hampering HTT
proteolysis, by inhibiting caspase-1 and -3 mRNA upregula-
tion, e. g. with Minocycline.!"*”

Since mitochondrial dysfunction plays a major role already
at an early stage of HD pathogenesis,!'**! researchers inves-
tigated Meclizine and Cystamine with success in mouse/fly
models."*1* Furthermore, targeting transcriptional dysregula-
tion with histone deacetylase inhibitors, e.g. sodium phenyl-
butyrate or suberoylanilide hydroxamic acid proved efficient
in mice models.!">""*

Also, as shown by Matthes etal!®” and Kumar and
coworkers,® it is possible to decrease mRNA toxicity, as well
as hamper its aberrant binding with proteins, by directly
targeting the CAG hairpin in the HTT mRNA with small
molecules, like D6 or Furamidine.

7.2 Small Biologics

Yamamoto et al. showed with a conditional mouse model the
potential for silencing mutant HTT expression as a putative
treatment option for HD.!'**! Moreover, they demonstrated that
a continuous influx of mutant protein is essential to maintain
inclusions and symptoms. Thus, the silencing of the mutant
HTT gene is an interesting therapeutic approach.

In general, RNA-targeted treatments in HD are based on
RNA interference (RNAIi), antisense oligonucleotides (ASO),
or small-molecule splicing modulators.

RNA interference. RNAI relies on either duplex RNAs
(dsRNAs) or chemically modified single-stranded RNAs
(ssRNAs),!** 15 which are introduced into the body for robust
and sustained suppression of the target gene product.*”'*¥
Since these miRNA are known to produce only a partial
knockdown in the transduced region, further elucidation of the
precise mechanism behind miRNA-based HTT silencing in the
brain with computational biology provides an intriguing line
of research,!**~'6!]

Antisense Oligonucleotides (AS0). Single-stranded artifi-
cial DNA molecules either bind to mRNA resulting in mRNA
degradation, or interfere with ribosomal attachment, modulat-
ing RNA splicing."**'*? However, some disadvantages such as
complicated administration procedures are present.!'®!
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HD patients with two mutant alleles are rare and limited
data suggested a similar disease onset age but a more severe
clinical progression,'® while HTT has been associated with
neuroprotective effects.'®! Therefore, allele-selective ASOs,
targeting only mutant H77, were investigated by Carroll et al.
Their ASOs exploit single-nucleotide polymorphisms (SNPs)
to increase selectivity for the mutant allele."*” They showed
furthermore, that therapies targeting as few as three SNPs may
benefit 85% of patients with HD of northern European and
indigenous South American descent.

On the other hand, Tominersen (formerly known as
RG6042 and IONIS-HTTRx) is a non-allele-selective ASO,
consisting of a synthetic 20-nucleotide DNA-like sequence,
where oxygen-to-sulphur backbone substitutions, and 2'-O-
methoxylethyl modifications improve efficacy and the pharma-
cokinetic profile.'’”) Tominersen was the first agent to be
assessed in clinical trials and researches estimated an 55-85%
reduction in cortical mHTT and a 20-50% reduction in
caudate mHTT while no dose-limiting toxicity was
nOted.[144’168]

7.3 RNA-processing Enzymes

Vofifeldt et al. performed a near genome-wide RNAi screen
for modulators of polyglutamine-induced neurotoxicity in
Drosophila.'® In this work, the authors grouped putative
modifiers into three categories: 1. Protein turnover/quality
control (7Trp2, DnaJ-1, Hop, Hsc70Cb, Hsc70-4, Prosf32, etc)
2. Nuclear import/export (emb, Ntf-2 and CG5738) and 3.
mRNA transport/editing and translation (orb, Nelf-E, Prp§,
etc). Silencing the fly ortholog (d{TRMT2a) of human tRNA
methyltransferase homolog 2a (TRMT2a) potently decreased
polyQ-induced photoreceptor degeneration, polyQ aggregates,
and toxicity. Moreover, a reduction in the amount of polyQ
aggregates and polyQ-toxicity in other disease models was
reported. Therefore, inhibition of TRMT2a enzyme in patients
affected by polyglutamine disorders, including HD, might be a
promising therapeutic strategy.

8. Outlook

HD is caused by CAG repeat expansions in the HTT gene,
encoding the huntingtin protein. Although no disease-curing or
disease-slowing treatment currently exists for HD, the devel-
opment of therapies to target H7T transcription and the
translation of its mRNA is of great interest, and it is currently
under intense investigation.

Here we have reviewed the current knowledge of RNA
pathogenicity in HD and how this was exploited, with both
experimental and computational approaches, to propose novel
therapeutic strategies. Up to now, three main methods to
reduce HTT mRNA toxicity emerged: These are ASOs, RNA|,
and small-molecules either targeting splicing modulators or
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directly the HTT mRNA, i.e. specifically the toxic CAG
hairpin.

Clinical trials using ASOs targeting H7T mRNA are
currently underway, and future ASO trials are planned,
including agents that seek to lower mutant H77 selectively. On
the other hand, the absence of human trials for RNAi reflects
the distribution and delivery challenges associated with RNAI:
RNA does not distribute well throughout brain tissue, so
stereotactic surgery is needed to deliver the agent via a viral
vector, at the cost of increased invasiveness, and risks
associated with long-term toxicity.

For these reasons, small molecule RNA-targeting com-
pounds are a viable strategy: a brain-penetrant, orally
bioavailable small molecule acting on protein manufacture to
lower HTT expression or on the toxic CAG hairpin to lower
its aberrant ability to recruit proteins, is appealing, specifically
in terms of easiness of delivery.

Computational methods are becoming key tools in advanc-
ing the understanding of the biomolecular interactions and the
development of novel, potent modulators of biological path-
ways. Overall, some advances have been made towards
inhibiting protein-RNA interactions through small molecules,
peptides, and nucleic acids. However, more research is
required to improve the quality of structural predictions via
force fields or statistical learning tools.

We expect that as the development of new modulators
increases, novel data-intensive tools from the machine learning
field will further contribute here, and the resulting models will
benefit both computational and experimental research, in order
to manage to tackle these challenging neurodegenerative
diseases.
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