Hauptseite > Publikationsdatenbank > Early-stage evaluation of emerging CO 2 utilization technologies at low technology readiness levels > print |
001 | 877575 | ||
005 | 20240709082136.0 | ||
024 | 7 | _ | |a 10.1039/C9GC04440J |2 doi |
024 | 7 | _ | |a 1463-9262 |2 ISSN |
024 | 7 | _ | |a 1463-9270 |2 ISSN |
024 | 7 | _ | |a 2128/25309 |2 Handle |
024 | 7 | _ | |a altmetric:82738164 |2 altmetric |
024 | 7 | _ | |a WOS:000544314300014 |2 WOS |
037 | _ | _ | |a FZJ-2020-02300 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Roh, Kosan |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Early-stage evaluation of emerging CO 2 utilization technologies at low technology readiness levels |
260 | _ | _ | |a Cambridge |c 2020 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1595005335_26338 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Most CO2 utilization technologies are at low technology readiness levels (TRLs). Given the large number of potential technologies, screening to identify the most promising ones should be conducted before allocating large R&D investment. As these technologies exhibit different levels of technical maturity, a systematic, TRL-dependent evaluation procedure is needed which can also account for the quality and availability of data. We propose such a systematic and comprehensive evaluation procedure. The procedure consists of three steps: primary data preparation, secondary data calculation, and performance indicator calculation. The procedure depends on the type of CO2 utilization technology (thermochemical, electrochemical, or biological conversion) as well as the TRL (2–4). We suggest databases, methods, and computer-aided tools that support the procedure. Through four case studies, we demonstrate the proposed procedure on emerging CO2 utilization technologies, which are of different types and at various TRLs: electrochemical CO2 reduction for production of ten chemicals (TRL 2); co-electrolysis of CO2 and water for ethylene production (TRL 2–4); direct oxidation of CO2-based methanol for oxymethylene dimethyl ether (OME1) production (TRL 4); and microalgal biomass co-firing for power generation (TRL 4). |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 1 |u fzj |
700 | 1 | _ | |a Bongartz, Dominik |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Burre, Jannik |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Chung, Wonsuk |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Deutz, Sarah |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Han, Dongho |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Heßelmann, Matthias |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Kohlhaas, Yannik |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a König, Andrea |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Lee, Jeehwan S. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Meys, Raoul |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Völker, Simon |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Wessling, Matthias |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Lee, Jay H. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 15 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1039/C9GC04440J |g p. 10.1039.C9GC04440J |0 PERI:(DE-600)2006274-6 |n 12 |p 3842-3859 |t Green chemistry |v 22 |y 2020 |x 1463-9270 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877575/files/CU_Evaluation_koro_manuscript_rev_clean.pdf |y Published on 2020-05-21. Available in OpenAccess from 2021-05-21. |
909 | C | O | |o oai:juser.fz-juelich.de:877575 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 15 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-02 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GREEN CHEM : 2018 |d 2020-01-02 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b GREEN CHEM : 2018 |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-02 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |d 2020-01-02 |w ger |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2020-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-02 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|