000877586 001__ 877586
000877586 005__ 20221109161717.0
000877586 0247_ $$2arXiv$$aarXiv:2006.08498
000877586 0247_ $$2doi$$a10.1016/j.cpc.2021.108081
000877586 0247_ $$2Handle$$a2128/28211
000877586 0247_ $$2WOS$$aWOS:000681244600014
000877586 037__ $$aFZJ-2020-02308
000877586 082__ $$a530
000877586 1001_ $$0P:(DE-HGF)0$$aZhang, Xiao$$b0
000877586 245__ $$aSolving the Bethe-Salpeter equation on massively parallel architectures
000877586 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2021
000877586 3367_ $$2DRIVER$$aarticle
000877586 3367_ $$2DataCite$$aOutput Types/Journal article
000877586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626670019_10981
000877586 3367_ $$2BibTeX$$aARTICLE
000877586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877586 3367_ $$00$$2EndNote$$aJournal Article
000877586 520__ $$aThe last ten years have witnessed fast spreading of massively parallel computing clusters, from leading supercomputing facilities down to the average university computing center. Many companies in the private sector have undergone a similar evolution. In this scenario, the seamless integration of software and middleware libraries is a key ingredient to ensure portability of scientific codes and guarantees them an extended lifetime. In this work, we describe the integration of the ChASE library, a modern parallel eigensolver, into an existing legacy code for the first-principles computation of optical properties of materials via solution of the Bethe-Salpeter equation for the optical polarization function. Our numerical tests show that, as a result of integrating ChASE and parallelizing the reading routine, the code experiences a remarkable speedup and greatly improved scaling behavior on both multi- and many-core architectures. We demonstrate that such a modernized BSE code will, by fully exploiting parallel computing architectures and file systems, enable domain scientists to accurately study complex material systems that were not accessible before.
000877586 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000877586 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000877586 588__ $$aDataset connected to arXivarXiv
000877586 7001_ $$0P:(DE-Juel1)169552$$aAchilles, Sebastian$$b1
000877586 7001_ $$0P:(DE-HGF)0$$aWinkelmann, Jan$$b2
000877586 7001_ $$0P:(DE-HGF)0$$aHaas, Roland$$b3
000877586 7001_ $$0P:(DE-HGF)0$$aSchleife, André$$b4
000877586 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b5$$eCorresponding author
000877586 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2021.108081$$gVol. 267, p. 108081 -$$p108081$$tComputer physics communications$$v267$$x0010-4655$$y2021
000877586 8564_ $$uhttps://juser.fz-juelich.de/record/877586/files/2006.08498.pdf$$yOpenAccess
000877586 909CO $$ooai:juser.fz-juelich.de:877586$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877586 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000877586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169552$$aForschungszentrum Jülich$$b1$$kFZJ
000877586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b5$$kFZJ
000877586 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000877586 9141_ $$y2021
000877586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877586 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2018$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000877586 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-15$$wger
000877586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000877586 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877586 980__ $$ajournal
000877586 980__ $$aVDB
000877586 980__ $$aUNRESTRICTED
000877586 980__ $$aI:(DE-Juel1)JSC-20090406
000877586 9801_ $$aFullTexts