Home > Publications database > Solving the Bethe-Salpeter equation on massively parallel architectures > print |
001 | 877586 | ||
005 | 20221109161717.0 | ||
024 | 7 | _ | |a arXiv:2006.08498 |2 arXiv |
024 | 7 | _ | |a 10.1016/j.cpc.2021.108081 |2 doi |
024 | 7 | _ | |a 2128/28211 |2 Handle |
024 | 7 | _ | |a WOS:000681244600014 |2 WOS |
037 | _ | _ | |a FZJ-2020-02308 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zhang, Xiao |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Solving the Bethe-Salpeter equation on massively parallel architectures |
260 | _ | _ | |a Amsterdam |c 2021 |b North Holland Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1626670019_10981 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The last ten years have witnessed fast spreading of massively parallel computing clusters, from leading supercomputing facilities down to the average university computing center. Many companies in the private sector have undergone a similar evolution. In this scenario, the seamless integration of software and middleware libraries is a key ingredient to ensure portability of scientific codes and guarantees them an extended lifetime. In this work, we describe the integration of the ChASE library, a modern parallel eigensolver, into an existing legacy code for the first-principles computation of optical properties of materials via solution of the Bethe-Salpeter equation for the optical polarization function. Our numerical tests show that, as a result of integrating ChASE and parallelizing the reading routine, the code experiences a remarkable speedup and greatly improved scaling behavior on both multi- and many-core architectures. We demonstrate that such a modernized BSE code will, by fully exploiting parallel computing architectures and file systems, enable domain scientists to accurately study complex material systems that were not accessible before. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Achilles, Sebastian |0 P:(DE-Juel1)169552 |b 1 |
700 | 1 | _ | |a Winkelmann, Jan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Haas, Roland |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schleife, André |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.cpc.2021.108081 |g Vol. 267, p. 108081 - |0 PERI:(DE-600)1466511-6 |p 108081 |t Computer physics communications |v 267 |y 2021 |x 0010-4655 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877586/files/2006.08498.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:877586 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169552 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144723 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-15 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-15 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT PHYS COMMUN : 2018 |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-15 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-15 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-15 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|