001     877586
005     20221109161717.0
024 7 _ |a arXiv:2006.08498
|2 arXiv
024 7 _ |a 10.1016/j.cpc.2021.108081
|2 doi
024 7 _ |a 2128/28211
|2 Handle
024 7 _ |a WOS:000681244600014
|2 WOS
037 _ _ |a FZJ-2020-02308
082 _ _ |a 530
100 1 _ |a Zhang, Xiao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Solving the Bethe-Salpeter equation on massively parallel architectures
260 _ _ |a Amsterdam
|c 2021
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626670019_10981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The last ten years have witnessed fast spreading of massively parallel computing clusters, from leading supercomputing facilities down to the average university computing center. Many companies in the private sector have undergone a similar evolution. In this scenario, the seamless integration of software and middleware libraries is a key ingredient to ensure portability of scientific codes and guarantees them an extended lifetime. In this work, we describe the integration of the ChASE library, a modern parallel eigensolver, into an existing legacy code for the first-principles computation of optical properties of materials via solution of the Bethe-Salpeter equation for the optical polarization function. Our numerical tests show that, as a result of integrating ChASE and parallelizing the reading routine, the code experiences a remarkable speedup and greatly improved scaling behavior on both multi- and many-core architectures. We demonstrate that such a modernized BSE code will, by fully exploiting parallel computing architectures and file systems, enable domain scientists to accurately study complex material systems that were not accessible before.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Achilles, Sebastian
|0 P:(DE-Juel1)169552
|b 1
700 1 _ |a Winkelmann, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Haas, Roland
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schleife, André
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.cpc.2021.108081
|g Vol. 267, p. 108081 -
|0 PERI:(DE-600)1466511-6
|p 108081
|t Computer physics communications
|v 267
|y 2021
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/877586/files/2006.08498.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877586
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169552
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144723
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2018
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-15
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-15
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-15
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21