001     877591
005     20211024011111.0
024 7 _ |a 10.1002/pssb.202000060
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a 1521-3951
|2 ISSN
024 7 _ |a 2128/26759
|2 Handle
024 7 _ |a WOS:000531713700001
|2 WOS
024 7 _ |a altmetric:74974359
|2 altmetric
037 _ _ |a FZJ-2020-02313
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Morgenstern, Markus
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634806635_19039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The contributions of surface science methods to discover and improve 3D topological insulator materials are reviewed herein, illustrated with examples from the authors’ own work. In particular, it is demonstrated that spin‐polarized angular‐resolved photoelectron spectroscopy is instrumental to evidence the spin‐helical surface Dirac cone, to tune its Dirac point energy toward the Fermi level, and to discover novel types of topological insulators such as dual ones or switchable ones in phase change materials. Moreover, procedures are introduced to spatially map potential fluctuations by scanning tunneling spectroscopy and to identify topological edge states in weak topological insulators.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pauly, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kellner, Jens
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Liebmann, Marcus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pratzer, Marco
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 5
700 1 _ |a Eschbach, Markus
|0 P:(DE-Juel1)145534
|b 6
700 1 _ |a Plucinski, Lukacz
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Otto, Sebastian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rasche, Bertold
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ruck, Michael
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Richter, Manuel
|0 P:(DE-Juel1)145046
|b 11
700 1 _ |a Just, Sven
|0 P:(DE-Juel1)162164
|b 12
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 13
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 14
773 _ _ |a 10.1002/pssb.202000060
|g p. 2000060 -
|0 PERI:(DE-600)1481096-7
|n 1
|p 2000060
|t Physica status solidi / B Basic research
|v 258
|y 2021
|x 1521-3951
856 4 _ |u https://juser.fz-juelich.de/record/877591/files/pssb.202000060.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877591
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)145046
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)162164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)128794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-Juel1)PTJ-ESE-20160331
|k PTJ-ESE
|l Energiesystem: Erneuerbare Energien/Kraftwerkstechnik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PTJ-ESE-20160331
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21