000877592 001__ 877592
000877592 005__ 20230426083219.0
000877592 0247_ $$2doi$$a10.1103/PhysRevB.101.245413
000877592 0247_ $$2ISSN$$a0163-1829
000877592 0247_ $$2ISSN$$a0556-2805
000877592 0247_ $$2ISSN$$a1050-2947
000877592 0247_ $$2ISSN$$a1094-1622
000877592 0247_ $$2ISSN$$a1095-3795
000877592 0247_ $$2ISSN$$a1098-0121
000877592 0247_ $$2ISSN$$a1538-4446
000877592 0247_ $$2ISSN$$a1538-4489
000877592 0247_ $$2ISSN$$a1550-235X
000877592 0247_ $$2ISSN$$a2469-9950
000877592 0247_ $$2ISSN$$a2469-9969
000877592 0247_ $$2ISSN$$a2469-9977
000877592 0247_ $$2Handle$$a2128/25102
000877592 0247_ $$2WOS$$aWOS:000539495600006
000877592 0247_ $$2altmetric$$aaltmetric:65500400
000877592 037__ $$aFZJ-2020-02314
000877592 082__ $$a530
000877592 1001_ $$0P:(DE-Juel1)162164$$aJust, Sven$$b0$$eCorresponding author
000877592 245__ $$aParasitic conduction channels in topological insulator thin films
000877592 260__ $$aWoodbury, NY$$bInst.$$c2020
000877592 3367_ $$2DRIVER$$aarticle
000877592 3367_ $$2DataCite$$aOutput Types/Journal article
000877592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592492302_22685
000877592 3367_ $$2BibTeX$$aARTICLE
000877592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877592 3367_ $$00$$2EndNote$$aJournal Article
000877592 520__ $$aThin films of topological insulators (TI) usually exhibit multiple parallel conduction channels for the transport of electrical current. Aside from the topologically protected surface states (TSS), parallel channels may exist, namely, the interior of the not-ideally insulating TI film, the interface layer to the substrate, and the substrate itself. To be able to take advantage of the auspicious transport properties of the TSS, the influence of the parasitic parallel channels on the total current transport has to be minimized. Because the conductivity of the interior (bulk) of the thin TI film is difficult to access by measurements, we propose here an approach for calculating the mobile charge carrier concentration in the TI film. To this end, we calculate the near-surface band bending using parameters obtained experimentally from surface-sensitive measurements, namely, (gate-dependent) four-point resistance measurements and angle-resolved photoelectron spectroscopy. While in most cases another parameter in the calculations, i.e., the concentration of unintentional dopants inside the thin TI film, is unknown, it turns out that in the thin-film limit the band bending is largely independent of the dopant concentration in the film. Thus, a well-founded estimate of the total mobile charge carrier concentration and the conductivity of the interior of the thin TI film proves possible. Since the interface and substrate conductivities can be measured by a four-probe conductance measurement prior to the deposition of the TI film, the total contribution of all parasitic channels, and therefore also the contribution of the vitally important TSS, can be determined reliably.
000877592 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000877592 542__ $$2Crossref$$i2020-06-11$$uhttps://link.aps.org/licenses/aps-default-license
000877592 588__ $$aDataset connected to CrossRef
000877592 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b1
000877592 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b2
000877592 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b3
000877592 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b4
000877592 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.101.245413$$bAmerican Physical Society (APS)$$d2020-06-11$$n24$$p245413$$tPhysical Review B$$v101$$x2469-9950$$y2020
000877592 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.101.245413$$gVol. 101, no. 24, p. 245413$$n24$$p245413$$tPhysical review / B$$v101$$x2469-9950$$y2020
000877592 8564_ $$uhttps://juser.fz-juelich.de/record/877592/files/PhysRevB.101.245413.pdf$$yOpenAccess
000877592 8564_ $$uhttps://juser.fz-juelich.de/record/877592/files/PhysRevB.101.245413.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877592 909CO $$ooai:juser.fz-juelich.de:877592$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162164$$aForschungszentrum Jülich$$b0$$kFZJ
000877592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b1$$kFZJ
000877592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b2$$kFZJ
000877592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
000877592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b4$$kFZJ
000877592 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877592 9141_ $$y2020
000877592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000877592 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000877592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877592 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000877592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000877592 920__ $$lyes
000877592 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000877592 980__ $$ajournal
000877592 980__ $$aVDB
000877592 980__ $$aUNRESTRICTED
000877592 980__ $$aI:(DE-Juel1)PGI-3-20110106
000877592 9801_ $$aFullTexts
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.146401
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08308
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1270
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl501489m
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.241306
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.066801
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/22/223201
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5042346
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/1/013003
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.075310
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b04425
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.035301
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2286
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.5b00102
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.195128
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcrysgro.2016.08.016
000877592 999C5 $$1H. Lüth$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-319-10756-1$$y2015
000877592 999C5 $$1A. Many$$2Crossref$$oA. Many Semiconductor Surfaces 1965$$tSemiconductor Surfaces$$y1965
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04233
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41535-018-0116-1
000877592 999C5 $$1T. Heinzel$$2Crossref$$oT. Heinzel Mesoscopic Electronics in Solid State Nanostructures 2010$$tMesoscopic Electronics in Solid State Nanostructures$$y2010
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1639
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1131
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.096802
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.177602
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn200556h
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.205407
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssc.2014.10.021
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.026801
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4938394
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep03406
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/28/49/495501
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1588
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aaa724
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4754108
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-6090(92)90872-9
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cg301236s
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4936079
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl803783g
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.016801
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3200237
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2018.11.016
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms15704
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms11381
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/10/103038
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.165432
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.155309
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2011.07.033
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.39.12985
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chemphys.2011.02.006
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3585673
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(59)90215-X
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3938/jkps.72.122
000877592 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/49/49/495302
000877592 999C5 $$1J. H. Davies$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9780511819070$$y1997